Kenworth HVAC Systems

Mobile Air Conditioning Society Worldwide 2017 Convention

Topics

- Introductions
- System Components
- Kenworth Electrical
- Truck System Information
 - B-Cab
 - T2000/T700
 - NGP 680/880
 - Testing/Troubleshooting
 - Scan Tool
 - K Series Medium Duty
 - T Series Medium Duty
 - KIMS

Who is PACCAR/Kenworth

PACCAR is the corporate umbrella for truck, and supply related manufacturing companies, headquartered in Bellevue, Washington. Initially manufactured railroad cars and logging equipment, starting in 1905.

Heavy-duty truck manufacturing market segments:

- Kenworth Motor Truck Company, USA, in 1945
- Peterbilt Motors Company, USA, in 1958
- Dart Truck Company, USA, in 1958
- Foden Trucks UK in 1981
- DAF Trucks N.V. in 1996
- Leyland Trucks UK in 1998

Truck Subsidiaries:

- Kenworth Mexicana VILPAC 1966
- Kenworth Australia, in 1970
- Paccar Engine Manufacturing NA, in 2010

Kenworth Models

Class 8 – Heavy Duty, Off Highway

+80,000# GVWR

2.3m (Wide Cab)

T2000 - > T700: No longer produced

1.9m B-Cabs

T800, W900, T600 -> T660, C500, C550,
 T440, 963

2.1m Next Generation Product (NGP)

- Kenworth: T680, T880
- Peterbilt: 579, 567

COE

- K500: Off highway ONLY
- K100: No longer produced

MONSTER TRUCK: up to 400,000# GVWR

963/965: Off highway ONLY – modified B-Cab electrics

Kenworth Models

Class 7, 6 & 5 – Medium Duty 33,000# – 16,001# GVWR

- T370, T270, T170
 Conventional Cab,
 Built in Saint Therese, Canada
 - T370 Class 7: 26,001 33,000# GVWR
 - T270 Class 6: 19,501 26,000# GVWR
 - T170 Class 5: 16,001 19,500# GVWR

- K370, K270 (LFNA: LF North America)
 COE, Cab built in Holland,
 Assembled onto chassis in Mexico
 - K370 Class 7: 26,001 33,000# GVWR
 - K270 Class 6: 19,501 26,000# GVWR
 - Use DAVIE 4 to service cab's electrical

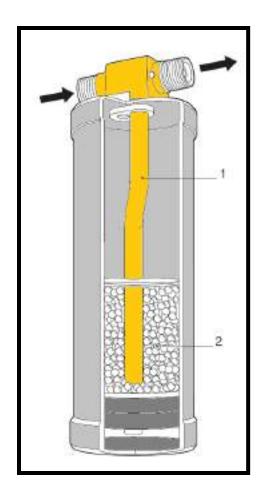
Kenworth/Peterbilt-Model Comparison

Models	Production Built Dates	Engine Emissions Level	
PB: 357, 378, 379, 385, 386 KW: C500, T600, T800, W900, Off-Highway	2004 - 2006	1998, 2004	
PB: 365, 367, 384, 386, 388, 389 KW: C500, T440/T470, T660, T800, W900, Off-Highway	2007 - 2009	2007	
PB: 387 KW: T2000	2008 - 2009	2007	
PB: 325, 330, 337, 348, 587	2010 - 2011		
KW: T170, T270, T370, T700	2010 - present	2010	
PB: 325, 330, 337, 348	2012 - present	2010	
PB: 587	2012		
PB: 365, 367, 384, 386, 388, 389	2010 - 2012		
KW: C500, T440/T470, T660, T800, W900, Off-Highway	2010 - present	2010	
PB: 579		2010	
KW:T680	2012 - present		
PB: 365, 367, 384, 386, 388, 389			
PB: 587	2013 - present	2013	

System Components

Most current applications use Sanden, compressors.

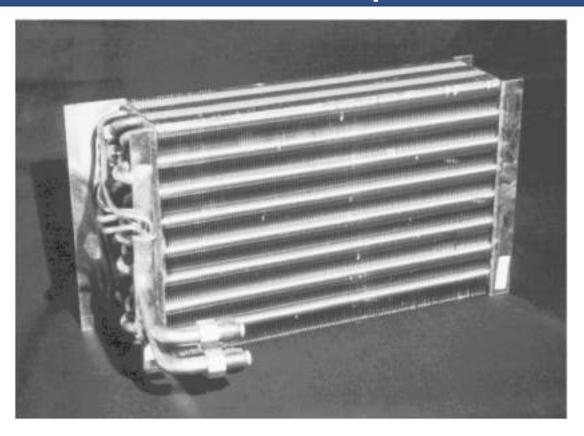
SD5H14 and SD7H15



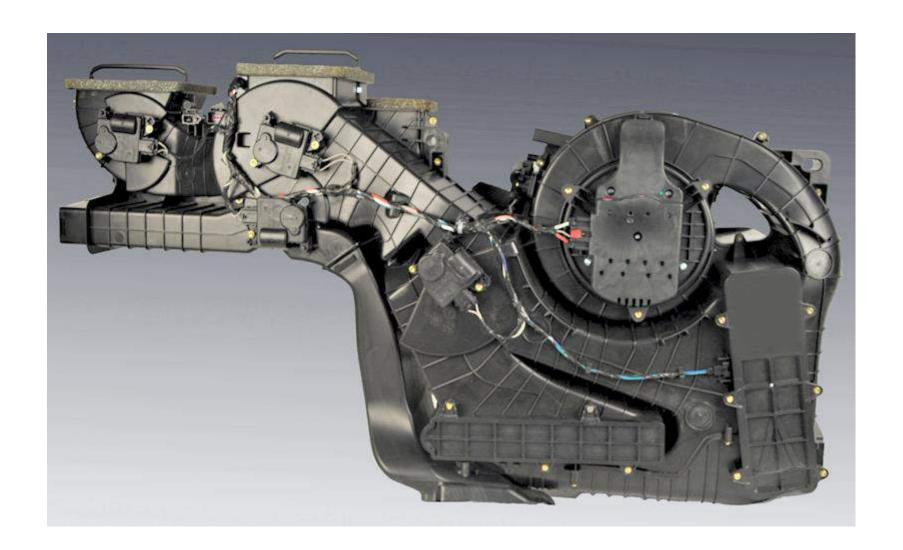
Condenser, sized per application parameters.

Receiver-Drier:

Normal application, absorbs system moisture and also filters and stores the liquid coolant Uses either XH7 or XH9 desiccant package.



Expansion Valve



Evaporator:

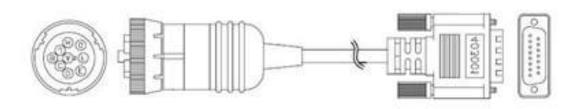
• Changes low pressure liquid into a low pressure gas by absorbing heat from cab air

Electrical

Electrical Systems

Electrical

CAN Electrical Systems Definitions


Definitions

Instrumentation Control Unit (ICU) – 1st generation Instrumentation-only Multiplex

Cab Electronic Control Unit (CECU) – 2nd generation Multiplex, includes systems other than instrumentation. CECU's variants relate to vehicle model and the engine emissions standard. Identifying which CECU in the vehicle helps determine what features are present and also aids in troubleshooting.

North American MultipleXing (NAMUX) - The CAN electrical architecture used by Kenworth and Peterbilt Divisions.

Electronic Service Analyst (ESA) - Software Program needed for all CAN system malfunction code reading and service related operations. NEXIQ scan tool used with ESA software.

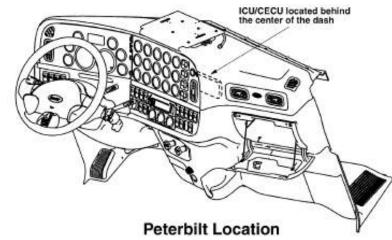
Electrical

Kenworth Electrical Systems – 2 Iterations

- Traditional Electrical Systems:
 - (Legacy thru 2004) KM815001
- CAN Based Instrumentation:
 - ICU NAMUX (2005-2007) KM815054/PM819010
 - CECU NAMUX2 (2007-2010) KM815054/PM819010
 - Service manual change, see page 38/39
- CECU3 NAMUX3/ NAMUX4 (2010 Present) w/Chassis Node

```
B-Cab = NAMUX 3 - KM815056 (includes DTC codes)
```

NGP = NAMUX 4 - <u>KM815057</u> (includes DTC codes)



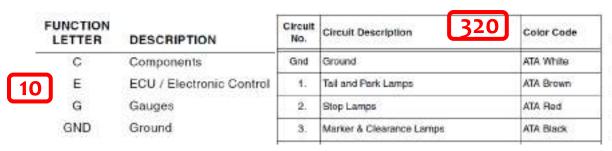
Electrical - Typical ICU/CECU Locations

Note: T2000 and T700 is at the front of the passenger footwell.

2010 emissions compliantT170, T270, T370 medium duty, is behind the lower center of the dash panel. Peterbilt versions, behind the top center of the dash panel.

Standard Electrical Systems – 1st Iteration

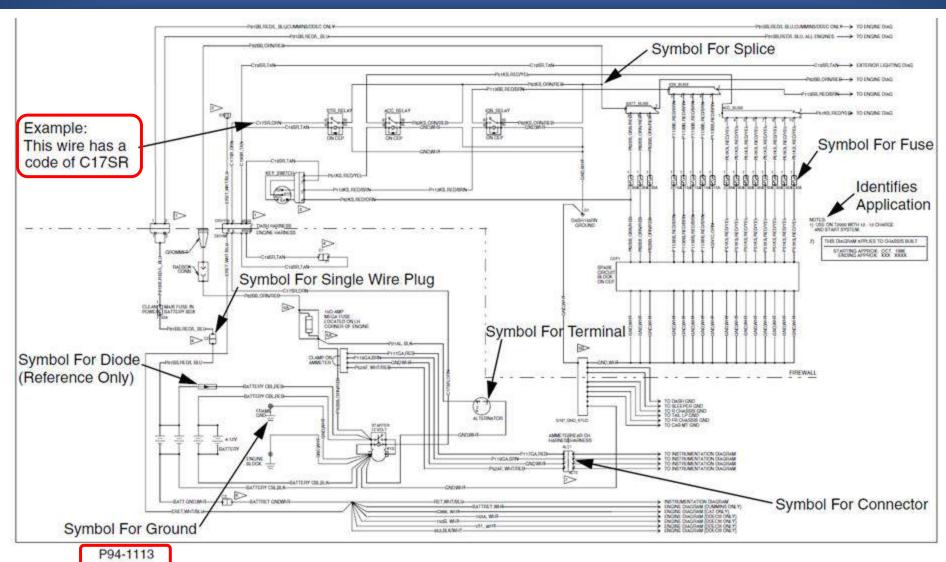
Original Circuit Wiring Key for production prior to phase out for CAN thru 2004

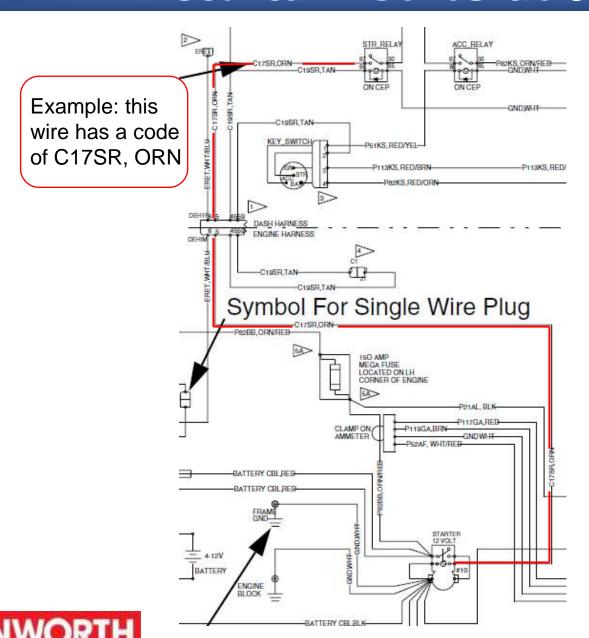

Example: C17SR

Function C = Components

Circuit Number 17 = Starter Solenoid

Destination or Purpose SR = Starter


Brief Examples of Each Category Definition


Des	tination or Purpose 247
A	
ABS	Anti-Lock Brake
AC	Air Conditioning
AD	Air Dryer
AF	Accessories Feed
V. V = V.	Transfer to the second second

Models Covered by Elect Wiring Key—T2000, T6/T8/T4, W900B, C500B, K100E

Electrical Circuit Matrix

See "Electrical Circuit Matrix" on previous page for instructions on how to identify circuit number and name.

Stripe	pe Solid Color														
	Black	Blue	Brown	Green	Grey	Lt. Blue	L1. Green	Orange	Pink	Purple	Red	Tan	Violet	White	Yellow
Black	21 22 ALTI PCB	108	37	94 76	27 28 29	30	98	111	53		49	72		52	33 166
Blue		4 103 104 105 106 107	215 308		179		56	64 226	50		120	223	163	RET	189
Brown			1119	58		44	320	139	245		113		155	174	200
Green	71 75 304	208	45 129	36 157 186	138 201	97		74 140	65	204	147 118	23	162	.11	32 70
Guy	197	. 78	127 132	135	13 69	311	317	133			183			131	CAP
Lt. Blue	306	109	309 110	101	63 177	5		229	249	209	81	86 92		178	SPS
Lt. Green	96	205	310 216		136	313	18	244		233	251	222	232	144	170
Orange	84 305	77 247	158	43 152	134	314	122	17 143 IGN			90		164	175 220	168
Pink	307	24	SPE	94	60	315	184		25 SPR	154	30			ERET	199
Purple				238	239	316	319	172	153	9	228	221		180	31
Red	148 192 195 303	150 190 207	128 194	42 191 210	182	91	99	82 141	116	90	2 117 181 BAT 123	73		54 100 193	38 62
Tan	290	SPC	83	46		93 85				237	14	19		179	171
Violet			156	246	176						126		26	OATI	151
White	112 115 301	7 206	159 41	12		318	124 102	160 88	79	10 236	48 234	114	56 235	81 145 146 GND V 187	167 87
Yellow	302	55 196	99 217 312	211	149 15 202	20	96 125	191		57	51 197 240	67	165 241	OAT2	35 121 142 ACC 185

P12HN — Kenworth Circuit Code

Circuit function -

Circuit number

Color of the wire

Destination of circuit or purpose of the circuit

Using Electrical Circuit Matrix

Example: P12HN

Circuit function -

FUNCTION LETTER	DESCRIPTION	
С	Components	
E	ECU / Electronic Control	
G	Gauges	
GND	Ground	
Н	Heating / Air Conditioning	
L	Lighting	P - identifies circuit
P	Power	
PCB	Power from Spare Circuit Breaker	function: Power
R	Relay	
S	Spare	

Example: P12HN

Circuit function

Circuit number - 12

Color of the wire

Destination of the circuit or purpose of the circuit

Using Electrical Circuit Matrix

Example: P12HN

12 - Identifies circuit color:

Green/White

Circuit number -

Color of the wire

Electrical: Electrical System

Circuit No.	Circuit Description	Colo Code
Gnd	Ground	ATA Voite
1,	Tail and Park Lamps	ATA E own
2.	Stop Lamps	ATA F
3.	Marker & Clearance Lamps	ATA Elick
4.	Hot Wire for Auxiliary Devices on Trailer	ATA E le
5.	Head Lamps	Lt. Blo
6.	Low Beam	Red/Eack
7.	High Beam	Blue/ hite
В.	Control Circuit for Accessory Relays	Red/l ay
9.	LH Road or Fog Lamp	Purpl
10.	RH Road or Fog Lamp	Purpl White
11.	Horn Relay Ground	White areen
12.	Horn Relay Hot	Green/White
13,	Panel Lamps	Gray

Circuit No.	Circuit Description	Color Code
32.	Service Brake Sense	Yellow/Green
33.	Left Front Directional Signal Lamp	Yellow/Black
34.	Right Front Directional Signal Lamp	Green/Black
35.	Left Rear Directional Signal Lamp	ATA/Yellow
36.	Right Rear Directional Signal Lamp	ATA/Green
37.	Idle Validation Off	Brown/Black
38.	Idle Validation Signal	Yellow/Red
39.	Hot Feed Line to Pressure Auxiliary Switch	Red/Pink
40.	Return Line from Pressure Auxiliary Switch	Red/Violet
41.	Sanders	Brown/White
42.	Radio Receiver	Green/Red
43.	Radio Transmitter	Green/Orange
44.	Differential Lock	Lt. Blue/Brown
45.	Fifth Wheel Lock 26	Brown/Green
46	Low Air	Green/Tan

12 - Identifies circuit description:

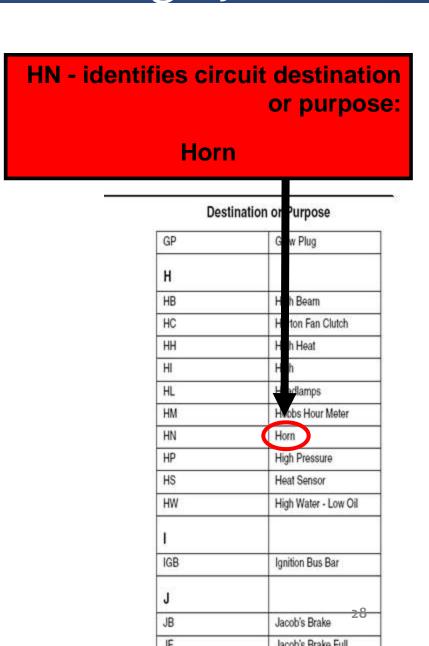
Horn Relay Hot

Example: P12HN

Circuit function

Circuit number

Color of the wire

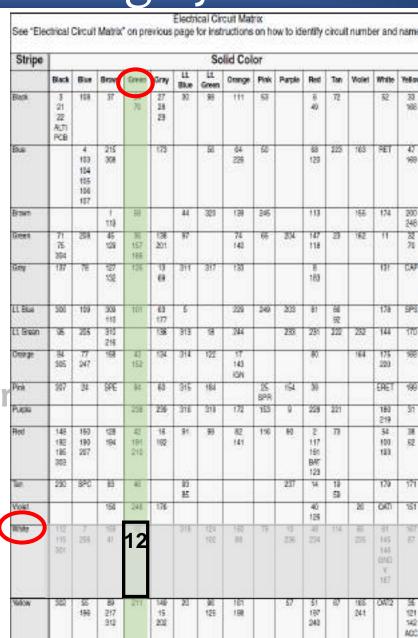

Destination of the circuit or purpose of the circuit - **HN**

Using Electrical Circuit Matrix

Example: P12HN

Circuit purpose – HN

Example: GREEN / WHITE

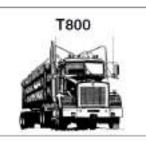

Circuit function

Circuit number

Color of the wire

Destination of the circuit or pur

Using Electrical Circuit Matrix



Electrical – CAN Code Designations

PACCAR Electrical Circuit Code Designations

- Multiplex migration began in 2004 in models T600, T660, T800, W900, C500 and Off-Highway models with instrumentation.
- Crossover trucks use a mixture of original circuit designations for existing electrical truck and chassis components, while "phasing" in the PACCAR circuit numbering system to support the multiplexed instrumentation
- Circuits numbers and alpha characters used to identify each circuit are much different than in our legacy circuit wiring key

Service Manual KM815052

Electrical – Can Systems

2005-2010 Multiplex, with ICU, CECU, CECU2, and CECU3 w/o Chassis Node Circuit Code Numbering and Abbreviations

Example: YEL 2111

YEL— **Function:** The first three alpha characters represent the color of the wire and define the primary electrical function of the circuit.

2111— **Component:** The four-digit circuit code describes the component or component subsystem that the wire supports. The components and subsystems are grouped hierarchically.

For example, in the lighting category:

- A general, lighting only circuit is labeled XXX2000.
- A less general, headlamps only circuit is labeled XXX2100.
- A more specific, low beam headlamps only circuit is labeled XXX2110.
- A very specific, left low beam headlamp circuit is labeled XXX2111.

Electrical – 2nd and Later Iterations

Circuit Code Numbering and Abbreviations

Example: YEL 2111

Insulation Color	Color Code	Electrical Function
Red with white stripe	R/WXXXX	Direct battery power
Red	REDXXXX	Protected battery power
Orange	ORNXXXX	Ignition Accessory Start power
Yellow	YELXXXX	Activated power
Brown	BRITANA	Indicator Illumination Backlit Illumination
Black	BLKXXXX	Load return
Gray	GRAXXXX	Control
Violet	VIOXXXX	Reference voltage
Light blue	BLUXXXX	Sensor signal
Light green	GRNXXXX	Sensor common not connected directly to ground
White	WHTXXXX	Ground

Number	Category
XXX0000 through XXX0999	General
XXX1000 through XXX1000	Power supply
XXX2000 through XXX2999	Lighting
XXX3000 through XXX3999	Power train
XXX4000 through XXX4999	Instrumentation, MMI
XXX5000 through XXX5999	Safety systems
XXX6000 through XXX6999	Convenience, Security
XXX7000 through XXX7999	HVAC
XXX8000 through XXX8999	(Category not Defined)
XXX9000 through XXX9999	Trailer/Customer/Bodybuilder

Table 2: Circuit Code General Categories

Table 1: Color Codes

Additional Wiring Detail Tables

Table 3: Data-Bus Wire Color

Table 4: Trailer/Body Builder Circuits

Table 5: Circuit Code Master List

CAN Communication

How many individual CANs may be found on a Kenworth?

- B-Cab? **Seven**
- T680/880? **Eight**
- New in 2016 **GREEN** 9 Pin
 - Onboard Diagnostic (O-CAN) to allow direct communication from DAVIE (scan tool) to the PCI

Aftertreatment (A-CAN)	Engine (E-CAN)
Body Builder (B-CAN) optional	Frame (F-CAN)
Cab (C-CAN) [T680/880]	Instrumentation (I-CAN)
Diagnostic (D-CAN)	Vehicle (V-CAN)

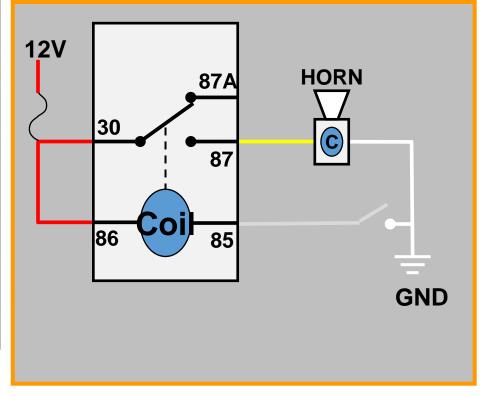
CAN Wire Numbering System

Example:

YEL5971

Table 1 Color Codes

PA	PACCAR Electrical Circuit Code				
Insulation Color	Color Code	Electrical Function			
Red w/ white strips	R/MXXXX	Direct battery power			
Red	REDXXXX	Protected battery power			
Orange	ORNXXXX	Ignition, Accessory, Low Voltage Disconnect, StartPower			
Yellow	YELXXXX	Activated Power			
White	WHTXXXX	Ground			
Black	BLKXXXX	Load Retun			
Gray	GRAXXXX	Control			
Brown	BRNXXXX	Indicator Illumination Backlit Illumination			
Violet	VIOXXXX	Reference Voltage or +5VDC or Sensor Power			
Light Blue	BLUXXXX	Sensor Signal			
Light Green	GRNXXXX	Sensor common or Sensor Ground			


PACCAR Wire Numbering System

Example: YEL5971

Insulation Color	Color Code	Electrical Function
ed w/ white stripe	n/anyoni	Direct battery power
Red	REDXXXX	Protected battery power
Orange	ORNXXXX	Ignition, Accessory, Low Voltage Disconnect, StartPower
Yellow	YELXXXX	Activated Power
White	WHTXXXX	Ground
Black	BLKXXXX	Load Retun
Gray	GRAXXXX	Control
Brown	BRNXXXX	Indicator Illumination Backlit Illumination
Violet	VIOXXXX	Reference Voltage or +5VDC or Sensor Power
Light Blue	BLUXXXX	Sensor Signal
Light Green	GRNXXXX	Sensor common or Sensor Ground

Using the color you can identify the circuit's FUNCTION

Red, Yellow, Gray and White are illustrated below

CAN Wire Numbering System

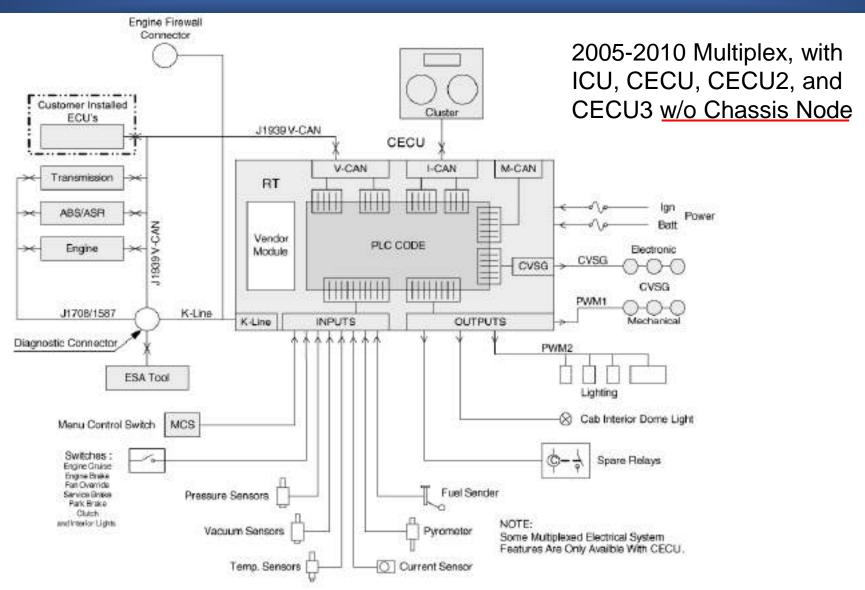
Data-Bus Wire Color

Most common:

- J1939, YEL & GRN
- J1587/1708, VIO & GRN
- Single-wire, BLU

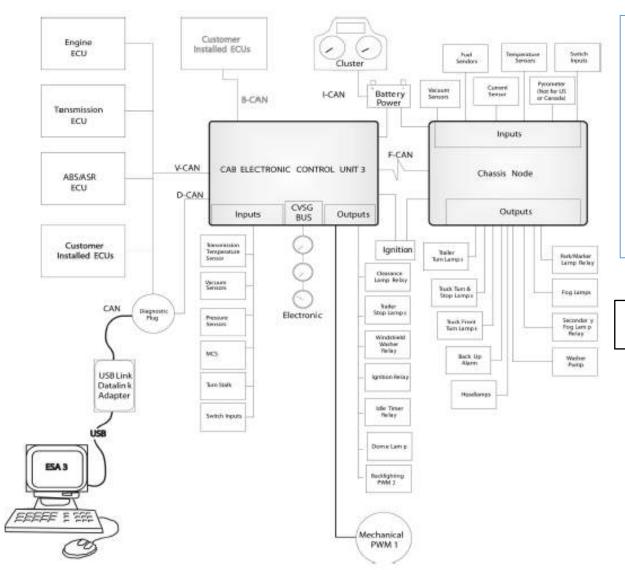
Table 3 — Data-Bus Wire Color					
Color Low side	Color High side	DATA Bus			
Light Green	Violet	SAE J1587 & J1708			
Light Green	Orange	SAE J1922			
Light Green	Yellow	SAE J1939			
Light Green	Red	OEM, Private bus			
Light Green	Gray	CAN			
-	Light blue	Single-wire bus			

CAN Wire Numbering System


Trailer/Body Builder Circuits

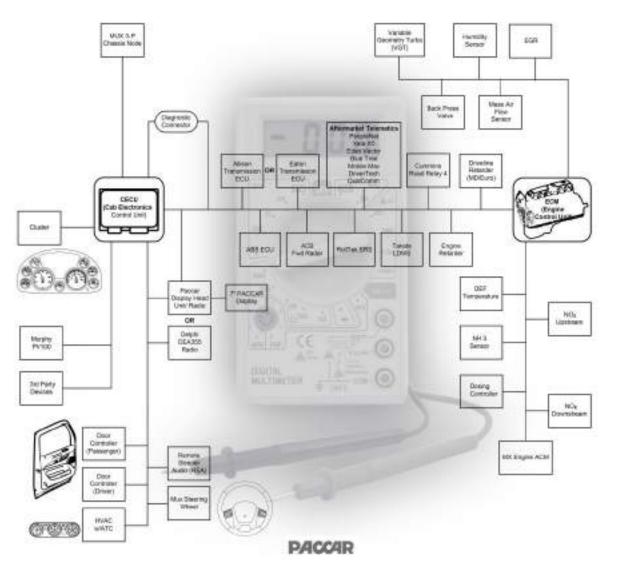
These are only on trailer circuits inside the green, yellow trailer cable jackets and special body builder circuits.

Table 4 — Trailer/Body Builder Circuits				
Color	Electrical Function			
White	Ground			
Black	Clearance, ID, Marker lamps			
Yellow	Left turn lamps			
Red	Stop lamps			
Light green	Right turn lamps			
Brown	Tail lamps			
Light blue	ABS power, Auxiliary			



Electrical – CAN Iterations

Electrical – Latest CAN Iteration

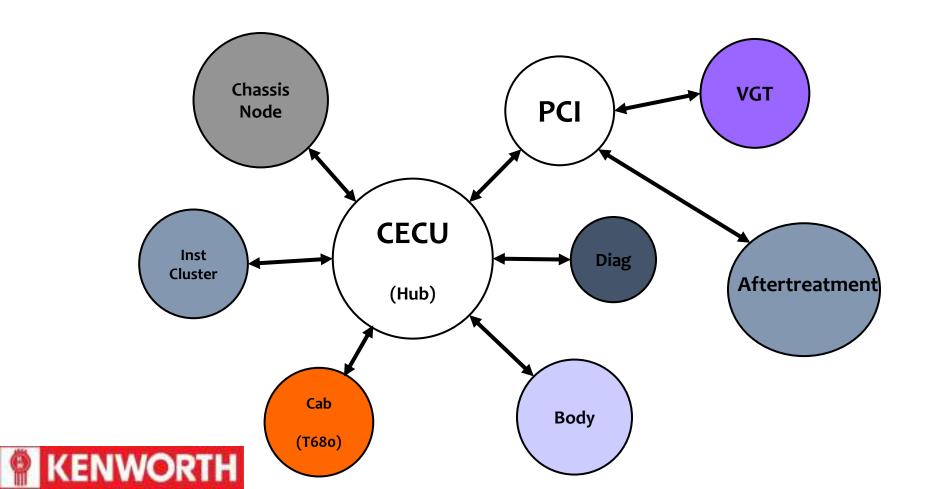


2010 Multiplexed Electrical System Service Manual — CECU3 w/Chassis Node

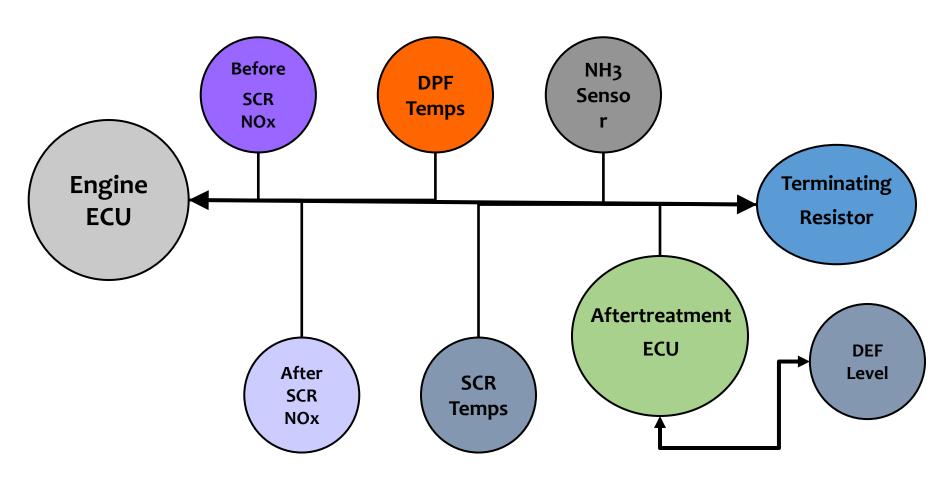
B-Cab = NAMUX 3

Electrical – Latest CAN Iteration

2012 Multiplexed Electrical System Service Manual — (P30-1011)


NGP = NAMUX 4

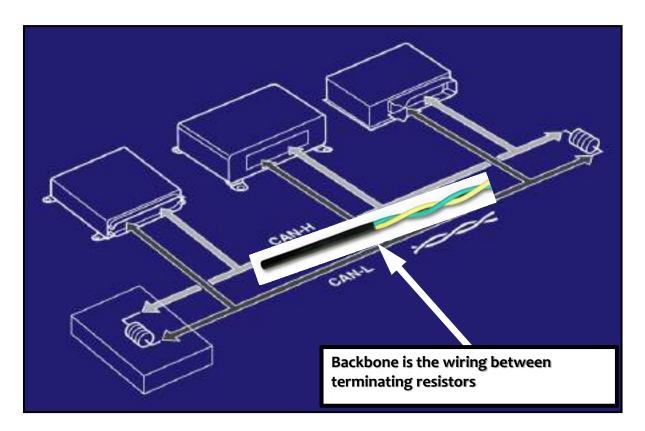
Service Manual KM815057/PM819023


CAN — Hub and Spoke

Central hub receives and relays information between different devices that are on separate CANs

CAN – Architecture

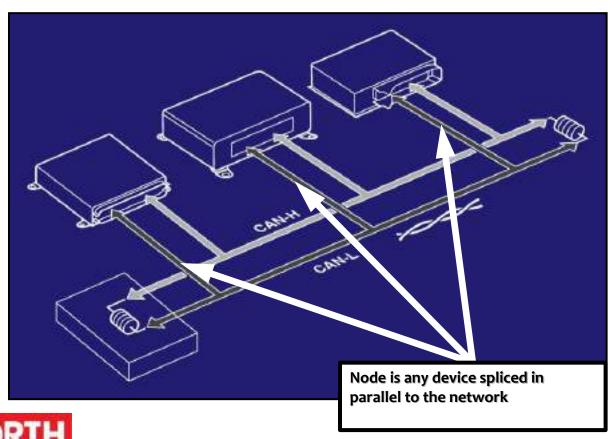
Local CAN architecture (A-CAN)



CAN – Backbone

Backbone

- Wiring between terminating resistors
 - One backbone for each CAN on the truck
 - Not one backbone for the whole truck



CAN - Node

Node

 Device spliced in parallel to the backbone, this includes wiring from splice to the device

CAN – Resistors

Terminating Resistor

- Resistor placed at one end of the backbone
- Can be in the harness or inside of an ECU

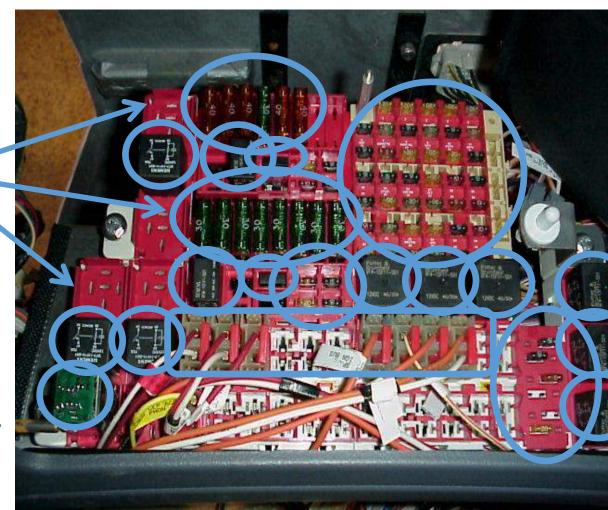
J1939 – Details

Local ECUs are connected to a backbone circuit

- Backbone will be a twisted pair of yellow and green wires between the terminating resistors
 - CAN Hi Yellow
 - CAN Lo Light Green
 - Why twisted?

Any EMI affects both wires

Class 8 – Heavy Duty


- Wide Cab
 - T2000
 - T700

E-Blocks

- (16) MAXI fuses
- (55) Mini fuses
- (4) Diodes
- (3) 70A Relays
- (11) ISO Relays
- (4) Half ISO Relays
- (1) Flasher
- (12) Spare Power taps

Part of IP Harness

Access: remove glove box

Class 8 – Heavy Duty, Off Highway

- B-Cab Pre 2001: KM815020
 - T800, W900, T600, C500
 - KM815020, Service Manual
- Engine side molded connectors:
 - Chassis Harness (1) 16-way
 - Trailer Harness (1) 8-way
 - Headlamp Harness (1) 8-way
 - Power Feed Harness (1) 1-way

Class 8 – Heavy Duty, Off Highway

- B-Cab Pre 2001:
 - T800, W900, T600, C500
 - KM815020, Service Manual

- Cab side molded connectors:
 - IP Harness (11) 8-ways
 - Spare BATT power strip

Half of the cover's vents open to the top, letting in water/snow.

Check bottom row of fuses & relays.

Cab Side View

Class 8 – Heavy Duty, Off Highway

- B-Cab Pre 2001:
 - T800, W900, T600, C500
 - KM815020, Service Manual

(26) ATO Fuses or

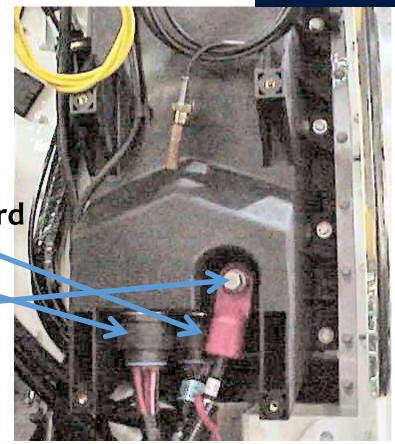
Type 1 Circuit Breakers (before 2001)

Type 2 Circuit Breakers (after 2001)

- (14) ISO Relays
- (1) Flasher
- (1) HVAC Shorting Relay (after 2000)

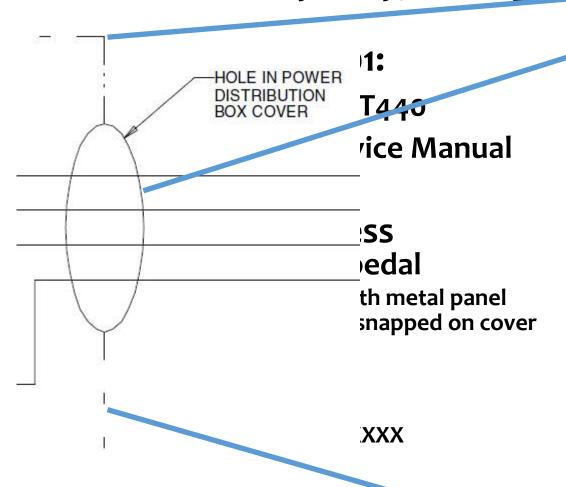
Relays and circuit breakers in Driver's side kick panel

Cab Side View



Class 8 – Heavy Duty, Off Highway

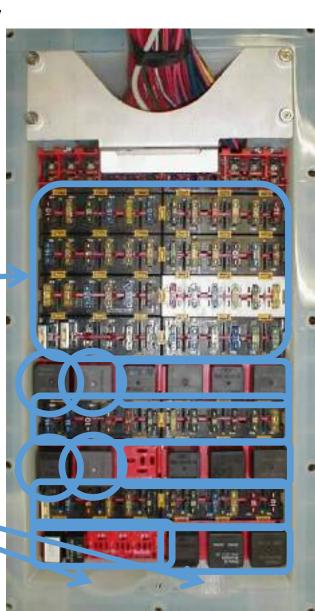
- B-Cab Post 2001:
 - T8, W9, T6, C5, T440
 - KM815055, Service Manual


Engine side connections:

- Chassis Harness, bottom rear
 - (1) Deutsch HDP30 29-way
- Trailer Harness, bottom forward
 - (1) Deutsch HDP30 9-way
- Power Feed Harness, on box
 - (1) Battery cable terminal

Class 8 – Heavy Duty, Off Highway

Class 8 – Heavy Duty, Off Highway

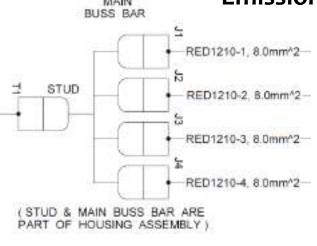

- B-Cab Post 2001: KM815055
 - T8, W9, T6, C5, T440
 - KM815055, Service Manual

E-B lock 92-4319 IP Harness drawing

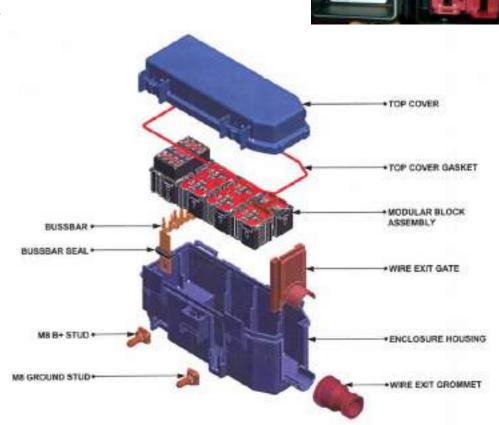
(60) ATO fuses and Type II Circuit breakers Find CEP (central electrical panel) (2) 704 Relayst colled by key switch

(13) ISO Relays Look up in ServiceNet. (5) Half ISO Relays

Depressions let water out

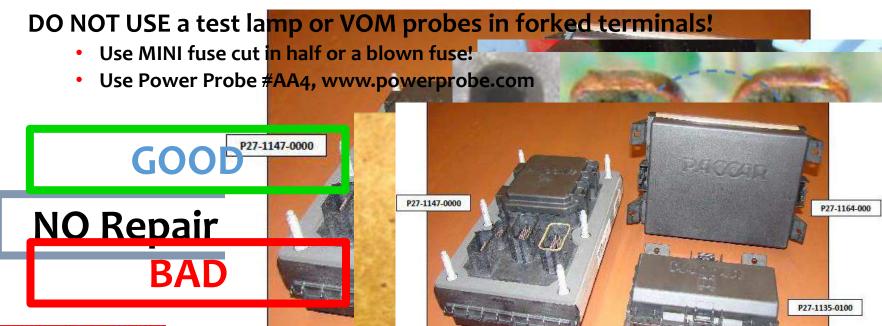

Class 8 – Heavy Duty, Off Highway

- B-Cab 2010 and on:
 - T8, W9, T6, C5, T440
- Chassis Load Center

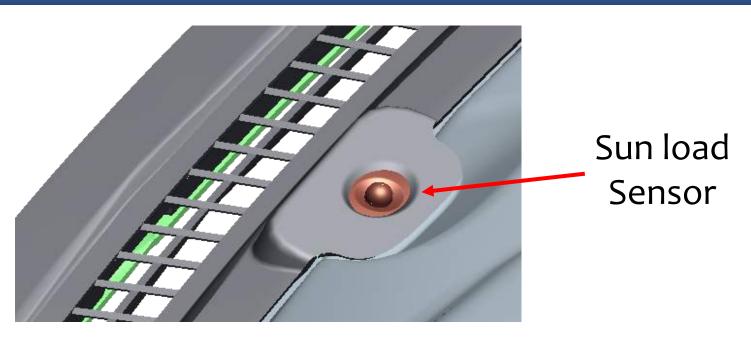

Content varies

Engine Type

Emission Level


Class 8 – Heavy Duty, Off Highway

• NGP: T680, T880, 579, 567


Class 7, 6, 5 – Medium Duty

• T370, T270, T170

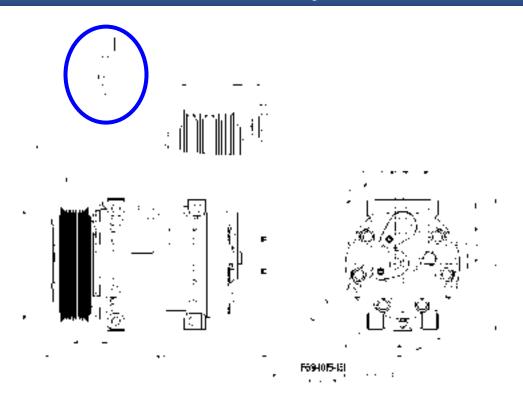
TIB 34-051 – Probing guide for these load centers

Sun Load Sensor - DTC919

Sensor resistance across pins A and B is 150K to 190K with no direct sun light

Sensor should have 5 volts to sensor and 0 to 5 volt signal from sensor

Check continuity of wires between sensor and HVAC control head connector


Sun Load Sensor

Secure sensor wiring harness connector to prevent it from falling down into the dash!

Compressor Clutch Relay Circuit - DTC 876

- Check clutch resistance between A and B 2.8 to 4.4 ohms in clutch
- Check mating connector (A = Gnd and B = 12 V input need at least
 11.5 volts for clutch to operate properly.
- Check control circuit to relay in PDC

Outside Air Temperature (OAT) Sensor

Temp (deg C)	Min Resistance (kOhms)	Nom Resistance (kOhms)	Max Resistance (kOhms)
-40	315.108	336.479	358,975
-35	228.013	242.682	258.063
-30	166,804	176.976	187.599
-25	123.302	130.422	137.829
-20	92.054	97.083	102.294
-15	69.376	72.957	76.654
-10	52.768	55.329	57.972
-5	40.469	42.327	44.23
0	31.298	32.65	34.03
5	24.401	25.391	26.397
10	19.173	19.902	20.641
15	15.17	15.71	16.255
20	12.089	12.491	12.895
25	9.7	10	10.3
30	7.797	8.055	8.315
35	6,309	6.532	6.757
40	5.132	5.324	5.519
45	4.202	4.368	4.537
50	3.459	3.602	3.748
55	2.861	2.986	3.113
60	2.38	2.488	2.599
65	1.989	2.083	2.179
70	1_67	1.752	1.836
75	1.408	1.48	1.554
80	1.192	1.255	1.32
85	1.015	1.07	1.127

- Negative Temperature Coefficient (NTC) Sensor
- Located on driver's side mirror
- Check dash display to confirm sensor functioning relative to ambient temperature

Cab Actuators

- DTC 3981 panel mode actuator
- DTC 3986 temperature actuator
- DTC 3984 fresh / recirc actuator

- DTC 520196 defrost mode actuator
- DTC 520197 floor mode actuator

Access to Service Information

Unfortunately due to purely commercial nature of HD and off road, plus high RD and now governmental regulation costs, access to service information is strictly controlled.

Kenworth's primary responsibility is to provide it's Dealers with up to the moment information to fulfill warranty responsibilities.

Secondary service information access is available, in various levels and costs to:

- Fleets
 - Direct
 - Dealer Sponsored
- Independent Service Providers
- Colleges and Technical Schools
- Body Builders

Access to Service Information

- Paccar, as with all HD manufacturer's, is very protective of it's intellectual information. It does, however, realize that a legitimate need for service information exists outside the Dealer environment.
- The single "best" approach for ISPs to service information is to develop a working relationship with your local KW/PB dealer.
- Dealer Sponsored Fleet
 - Service Information not for sale otherwise
 - ESA/Davie Software/Scan Tool
 - Parts
- Fleet Web ECAT (subscription cost type arrangement)
 - Service Information, bulletins, specs, and <u>Wiring Diagrams</u>
- Colleges & Technical Schools
 - Get a Dealer Sponsored Fleet Designation
 - Full access to information, diagrams, flat rate times, etc
- Right to Repair Policy
 - Yet to be completed
 - Will change policies outlined above

Truck System Information

"B" Cab (1.9m cab) W900 / T440 / T660 / T800 / C500 / 963

Kenworth Models

Class 8 – Heavy Duty:

• B-Cab Series: T440, C500, T600 -> T660, T800, W900

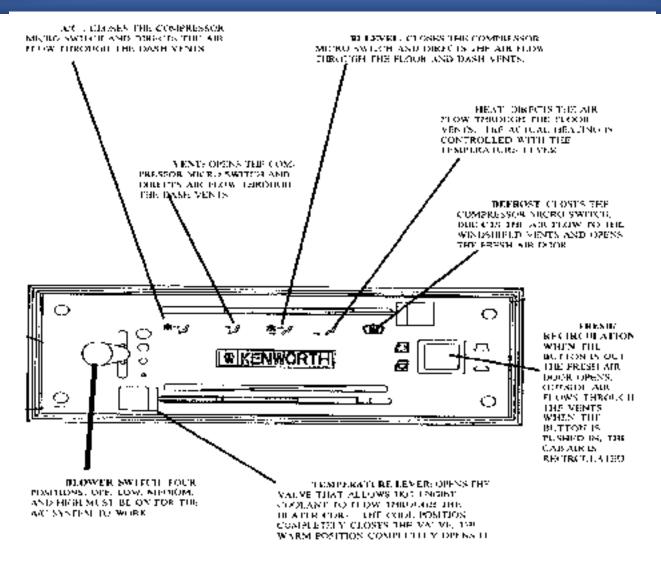
Kenworth Models

• Monster Trucks: Off highway heavy duty up to 400,000# GVW

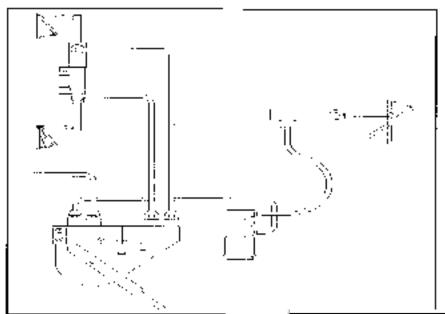
B-Cab: Apr 1994 to Feb 2001

- Pneumatic (air) actuated mode controls
- Cable actuated heater control valve
- 3 Blower fan speeds (Low, Med, High) controlled by a resistor block
- 1 HVAC Relay (coil grounded through fan switch)
- Binary Pressure Switch

Early Climate Control Compressor


Standard Piston Type Compressor

- Pistons lubricated with oil from bottom of the case
- Oil level should be measured each time the system is opened
- Vertical Mount, curved dip stick
- Horizontal mount, straight dip stick
- Discontinued standard use in 2001,
- * limited use for some export, nonemission apps. going forward


B-Cab Controls

Used on B-Cab from 1995 to 2001.

Actuator Control

Early B-CAB uses a pneumatic pressure system for door and vent controls

Year range:

1995 to 2001

Mode Control Position	Heat/AC Air to Cylinder Door	AC/Defrost Air to Cylinder/Door	Fresh/Recirc Air to Cylinder/Door	Compressor Clutch Microswitch
A/C	No Pressure/ Closed	Pressure/ Closed	Pressure/ Closed	Closed
Vent	No Pressure/ Closed	Pressure/ Closed	Optional	Open
Bi-Level	Pressure/ 1/2 Open	Pressure/ Closed	Optional	Closed
Heat	Pressure/ Open	No Pressure/ Open	Optional	Open
Defrost	No Pressure/ Open	No Pressure/ Open	No Pressure/ Open	Closed

Freeze-Switch

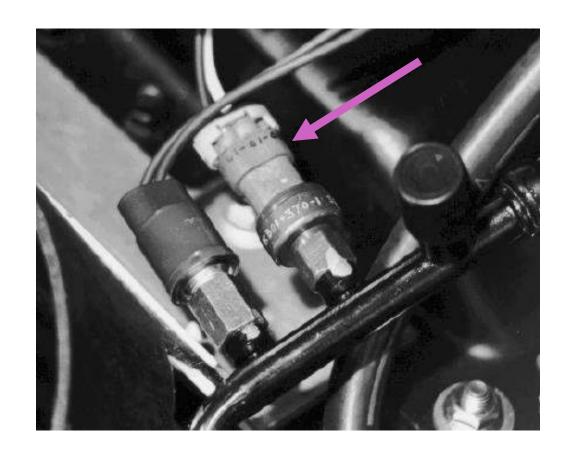
Both B-Cab and T2000 use the freeze switch in the ground side of the HVAC relay control circuit. The freeze switch opens at 31.5° F and closes at 40°F.

(The B-Cab freeze switch is located in the blower housing, on the engine side of the fire wall)

Testing Thermostatic Switch (N/C)

If freeze switch fails closed, compressor runs all the time and never cycles – evaporator eventually freezes up

If freeze switch fails open, the compressor will never engage.


If wrong calibration, we will not meet duct temperature

Pressure Switch

B-Cab uses a binary cutout switch on the power side of clutch:

- Low pressure settingopens at 26 psi
- High pressure setting
 opens at 400 psi

B-Cab HVAC Changes By Years

- April 1994 to Feb. 2001: use W/D's R115-5646, sleeper P94-1333
- March 2001 to Dec 2001 (two HVAC relays and electronic controls & actuators): use W/D P94-1084
- Dec 2001 to June 2004 (two HVAC relays and electronic controls & actuators): use W/D P94-1391
- July 2004 to Jan 2007 (added in the linear power module and electronic actuated water valve (NBI): DO NOT use P94-1459, use P94-1587. Sleeper use P94-1478
- NAMUX 2 with 07 emissions engine (eliminated binary switch and added in high and low pressure switches at expansion valve): use P94-1698
- Changed to NAMUX 3 for 2010 engines and sleeper: use P94-1852 / P94-1958

Operating Temperatures

CONVENTIONAL MODELS WITHOUT SLEEPER

Outside Temperature in Degrees F.	Center Duct Temperature	High Side Gauge Reading (PSI)	Low Side Gauge Reading (PSI)
70	43 - 49	95 - 130	7 - 14
80	47 - 51	100 - 135	10 - 17
90	53 - 57	120 - 155	14 - 21
100	59 - 63	155 - 185	19 - 26
110	65 - 69	185 - 205	24 - 31
High Humidity Adjustment	0 - 15	No change	High side of range

If the humidity is over 70%, the duct temperatures will be from normal to 15° higher

B-Cab: Mar 2001 to Dec 2001

- Electrically actuated mode controls
- Cable actuated heater control valve
- 3 Blower fan speeds (Low, Med, High) controlled by a resistor block
- 2 HVAC Relays
- Binary Pressure Switch

Blower Controls

Mode Actuator Specifications

Face Mode, Position 1

11 – 12 volts – signal wire to ground

Bi-Level Mode, Position 2

9 to 10 volts – signal wire to ground

Floor Mode, Position 3

6 – 7 volts – signal to ground

Blend Mode, Position 4

2.5 – 3.5 volts signal to ground

Defrost Mode, Position 5

o to 1 volts - signal to ground

Fresh Air Position (+) 11-12 volts (A to B)

Recirc. Position (-) 11-12 volts (A to B)

B-Cab: Dec 2001 to June 2004

- Electrically actuated mode controls
- Cable actuated heater control valve
- 3 Blower fan speeds (Low, Med, High) controlled by a resistor block
- 2 HVAC Relays
- Binary Pressure Switch

Hot Water Valve

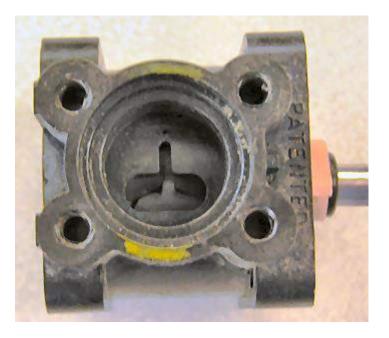
Kenworth utilizes hot water valves in many HVAC systems, with two basic types: Cable operated and Electronic

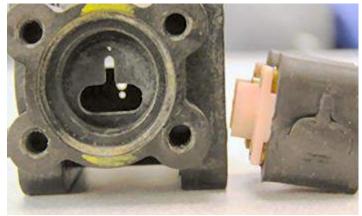
Cable Operated – T-Series M/D prior to Jan 2016, K-Series M/D, B-Cab prior to July 2004

Electronic – B-Cab after July 2004, T-Series M/D after Jan 2016

Common Issue - Water Valves Leaking

Complaint

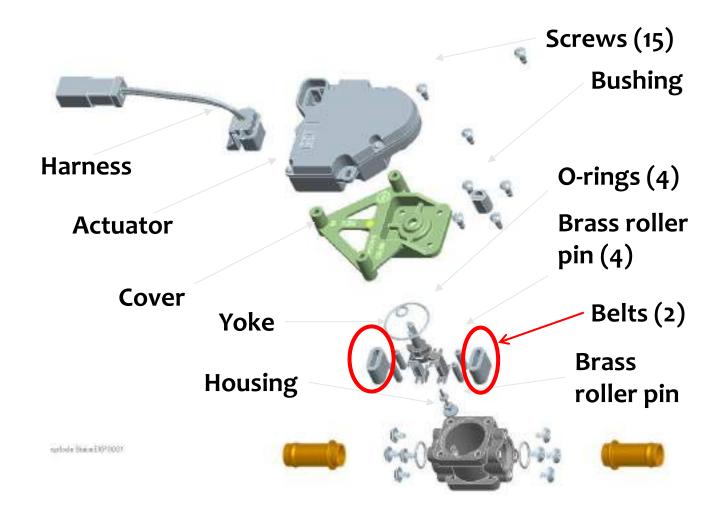

 Water valve rubber seal becomes wedged in valve which doesn't allow the driver to shut off the heat


Cause

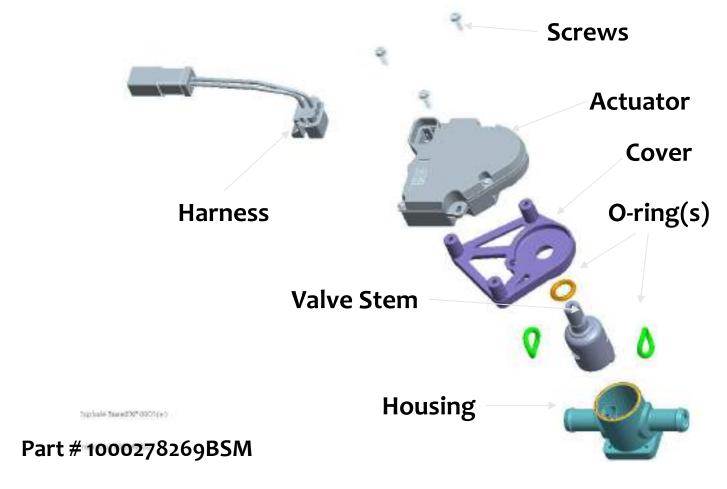
- Coolant or Coolant Additives causes rubber to swell
- Chassis Affected
 - Legacy models

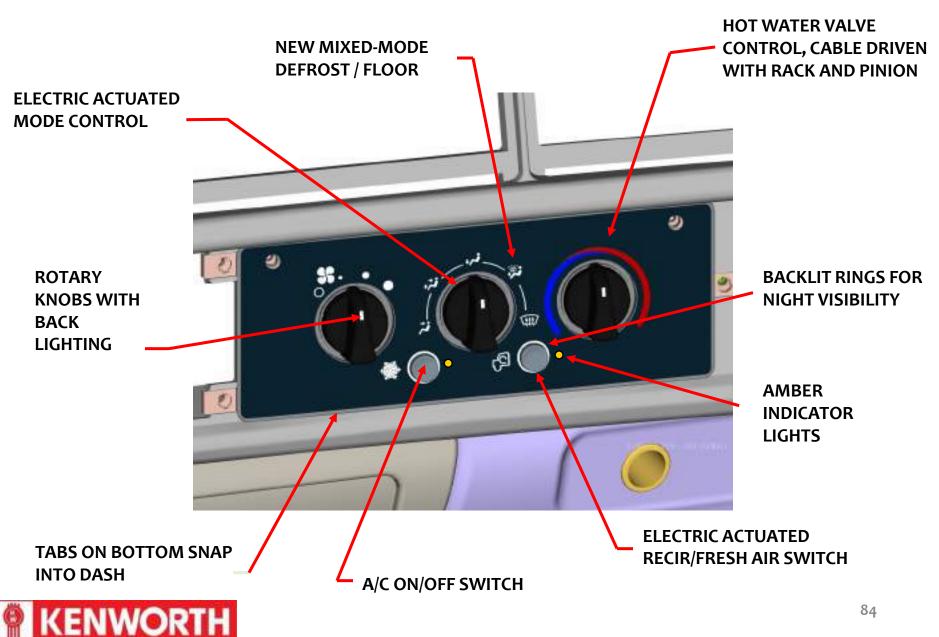
Correction

- Revised part implemented
- Gen 2 valve does not have a belt to swell, the housing has a material developed specifically for Organic Acid Technology (OAT) coolant which eliminated stripping/cracking
- Gives enhanced performance using with all typical automotive coolants, at elevated temperatures and pressures commonly seen in emissions engines



Early Heater Control Valve - Belt Style


34 Components


Heater Control Valve Components – Gen II

11 Components

HVAC Control Panel

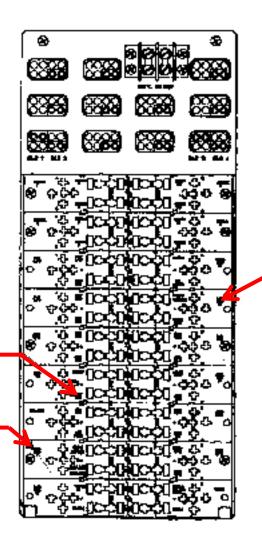
Kenworth HVAC Systems

- B-Cab HVAC Upgrade Changes
- March 5, 2001 through December 2001

P. D. Box-Changes

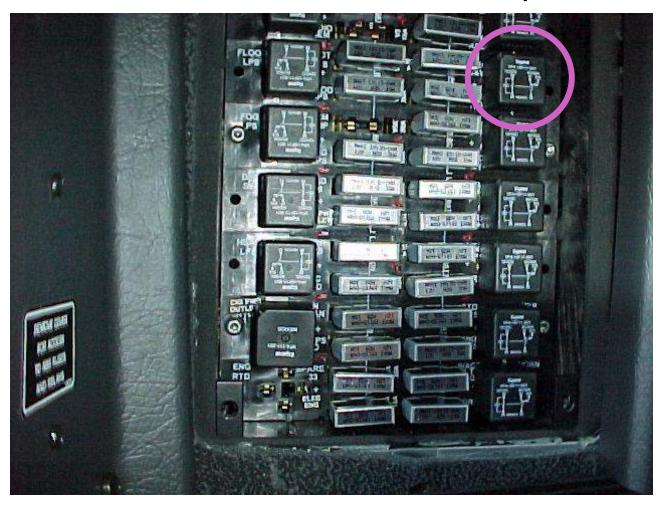
The functions of two relay positions have changed:


- 1. The ENG RTD 1 relay position has been relabeled as "Cig. Pwr. Outlet" This jumper wire (P/N VF4111Z01) now powers the cigar lighter and power wells in the cup holder. NOTE: The control circuit (85 & 86) is a live circuit and so if the jumper is replaced with a standard relay, the circuit will work but there will be a milliamp parasitic draw all the time
- 2. The LOW MIR HT. Relay is relabeled "HVAC Control" and powers the HVAC Control Head and electronic actuators. The Cab A/C relay still controls HVAC clutch as it previously did.



P.D. Box

B Cab Upgrade to PD Box from March 3, 2001 Until CEP Style was introduced December 2001



WASCLOW MIR HI IS RVAC CONTROL

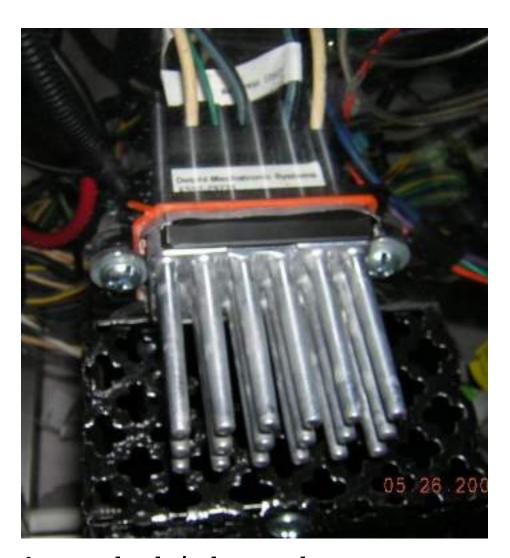
HVAC-Relay

B-CAB - Sends Power To The A/C Clutch

B-Cab: July 2004 to Jan 2007

- Electrically actuated mode controls
- Electrically actuated heater control valve
- 2 HVAC Relays
- Linear Power Module
- Binary Pressure Switch

Electronic Hot Water Valve



Five Wire Electronic Actuator

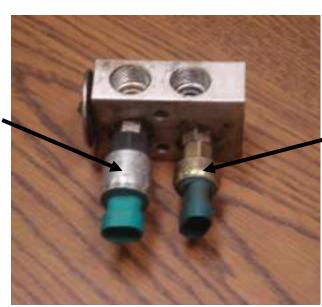
Linear Power Module

- Check for a varying voltage on the gray control wire when the fan speed knob is moved on the control head.
- Voltage on the black wire should also vary in conjunction with the fan speed knob and gray control wire.
- During fan operation, there may be voltage on the cooling rods, depending upon fan speed setting.

Replaces the Resistor Block / Thermal Fuse

B-Cab: NAMUX 2 with '07 Emissions Engine

- Electrically actuated mode controls
- Electrically actuated heater control valve
- 2 HVAC Relays
- Linear Power Module
- High & Low Pressure Switches

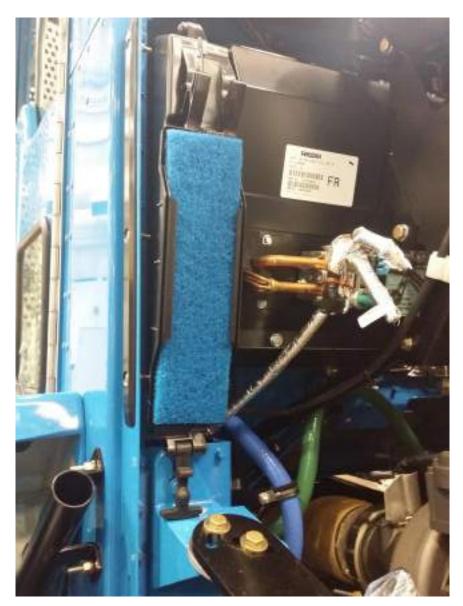


B-Cab low pressure switch

(2007 – present)

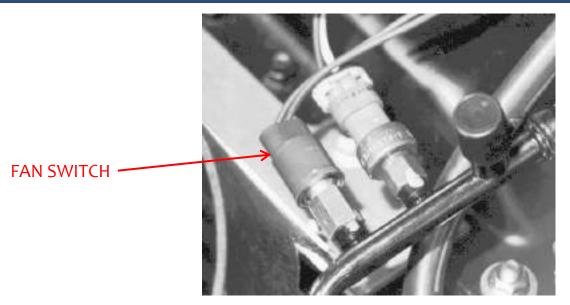
- Cut out = 10 +/- 4 PSI
- Cut in = 30 +/- 4 PSI

Low Pressure switch


Faster cycle times in cooler weather because low pressure switches off compressor before freeze switch reaches set point

High Pressure switch

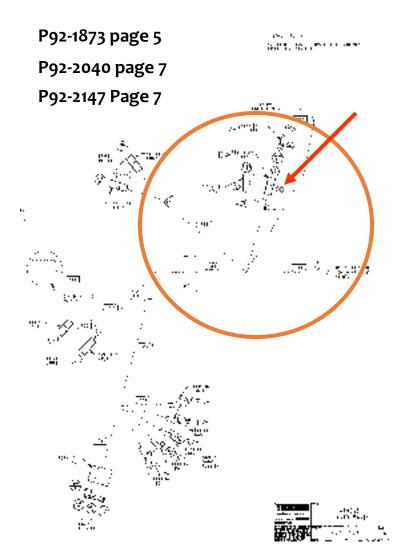
Fitting Assembly Torque: 3-5 Nm (27-44 in. lbs.)



B-Cab Fresh Air Filter

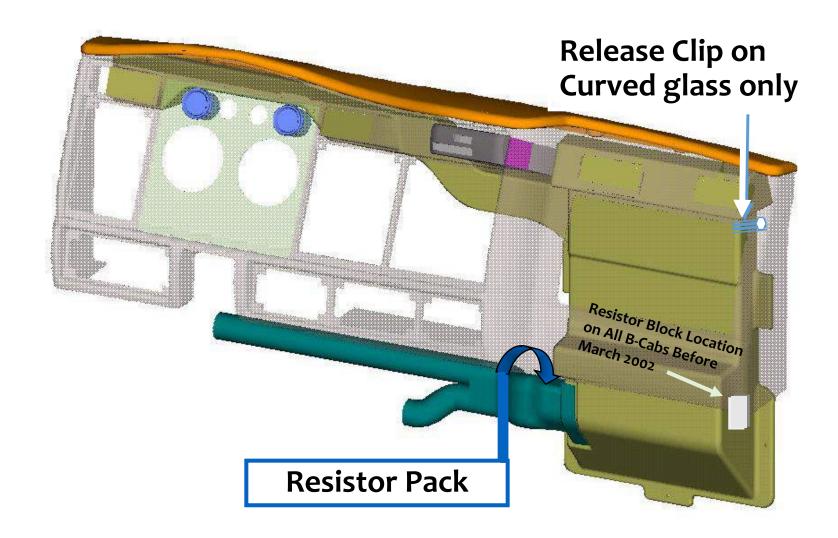
Engine Fan Override Switch

- The fan switch engages the electric engine fan when **high side pressures exceeds 275±10 psi.**
- The fan switch disengages the electric engine fan when the **high side pressures fall below 230±10 psi.**
- Fan switches on COE models, off highway models and with roof-mounted condensers may use a fan switch with higher set points. This reduces fan operation because of a slightly more efficient condenser which causes slightly lower operating pressures.

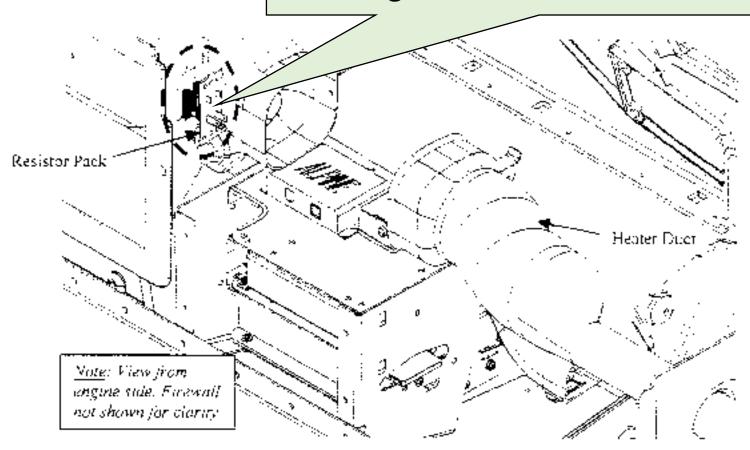

Engine Fan Override Switch

Fan Logic for Cat and Cummins are opposite (Cat - Closed and Cummins - Open)

Connect wire to 3 J for Cat engines

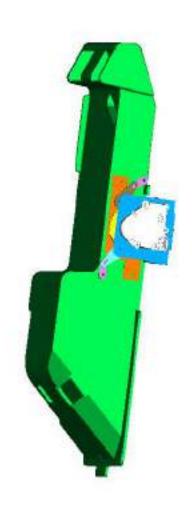

Connect wire to 3 K for Cummins engines

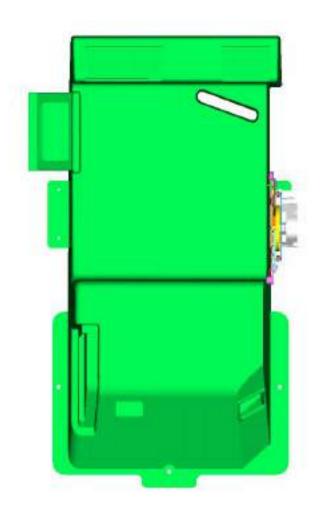
Note: Connector is found behind the safety gauge panel.


HVAC Duct Work

Resistor Pack Location

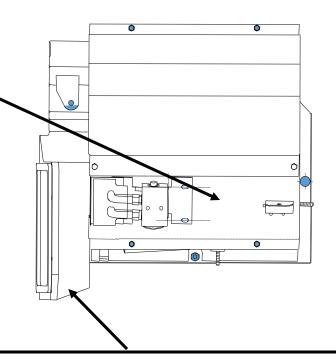
Viewing the Resistor Pack from the firewall




Driver's side here

* Must remove cup holder to get at resistor pack. Slide heater duct towards Driver's Side

Mode Door Actuator



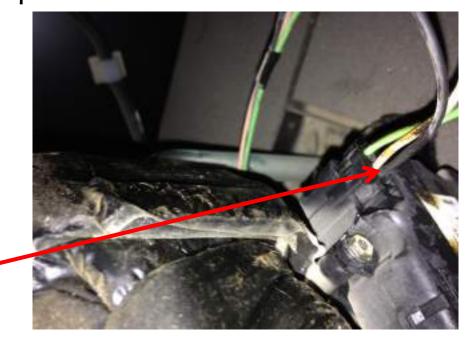
HVAC Unit – Under Hood

Electric Fresh Air/Recirc Actuator Rated At 221°F



High Density Polyethylene Fresh Air Duct Rated @ 190°F

Electronic Mode Actuator - Behind Glove Box



Sleeper Troubleshooting – Temp Sensor Check

Have voltmeter in C77 SU wire and to ground, to check voltage change when blowing on Temp sensor

Blow gently on sensor and watch to see that voltage goes up and returns when you stop.

Sleeper Troubleshooting Rocker Switch

Rocker Switch

Rocker Switch - H124AC = 12 volt supply (top)

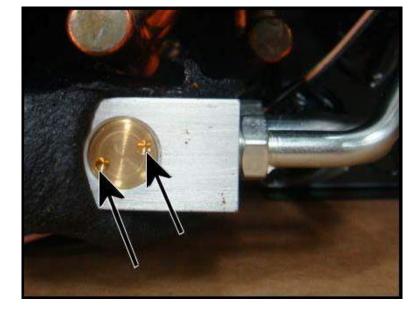
GND = ground (bottom terminal)

C77SU = control voltage (center)

If the switch is in "AUTO" (or open) the voltage is controlled by the module.

If switch is in "MAX HEAT" C77SU is switched to Gnd.

If switch is in "MAX A/C" C77SU power goes through a 1500 ohm resistor.


TIB 01-057 Sleeper HVAC Expansion Valve

If there is no green mark, cut and peel the black insulating tape from the end of the expansion valve on the side facing UP (the end without the large round disk).

If there is a brass set plug with two drilled removal tool holes, **replace** the expansion valve.

Note: Very Short Production, probably not seen in aftermarket repair facilities after warranty.

TIB 01-058 A/C Charge Label

• A/C Charge Label on C500, T800 and W900 Day Cab Chassis, built between 04/14/09 – 09/10/12.

Some customers may realize improved A/C performance with a refrigerant charge and future recharge to current specifications.

Kenworth has subsequently determined that a more optimal charge is 3lb-7oz to 3lb-8oz, instead of the original 4lb-ooz.

B-Cab: NAMUX 3 with 2010 Emissions

(Current Production Configuration)

- Electrically actuated mode controls
- Electrically actuated heater control valve
- 2 HVAC Relays
- Linear Power Module
- High & Low Pressure Switches

R-134a Refrigerant Considerations

- Kenworth uses HNBR O-rings (<u>Hydrogenated Nitrite</u> <u>Butadiene Rubber</u>) (may be tinted green). Lubricate O-rings with system specific oil.
- Require special oil Either POE (Early Climate Control Compressors) or PAG (Sanden Compressors). Oil used should not be intermixed.
- DO NOT lubricate slim-line seals on T680/T880 and Tseries MD with oil. These must be installed on clean, dry fittings.

B-Cab Component Oil Charge

Component	Oil Charge	
Evaporator	2 ounces	
Compressor	2 – 4 ounces (**drain compressor- balance)	
Condenser	1 ounces	
Receiver Dryer	0.5 to 1.5 ounces	
AC Lines	.5 - 1 ounce per line	

A/C System Oil Charge Issues

Oil charge imbalance is one of the most frequently seen problems HD systems.

Signs of potential A/C system oil over-charge include:

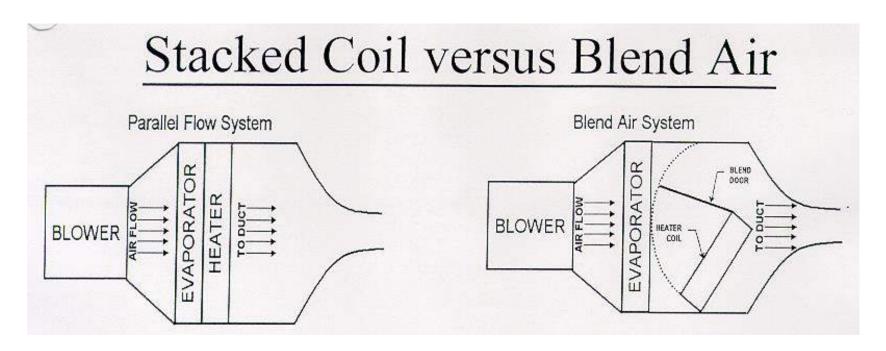
- Poor or marginal performance
- Low side line, after evaporator core, sweating
- Excessive oil drained when recovering refrigerant
- History of repeated compressor replacement
- Early compressor failure

T2000-/ T700

Kenworth Models

Wide Cab T2000 - > T700

No longer being produced



HVAC Changes By Years

- 1996 to Oct. 26, 1998 has APADS (A/C Protection and Diagnostics System): use P94-1125
- APADS Bypass: use P94-1224
- Oct 28,1998 to 2009 factory installed non–APADS: use P94-1105
- T2000 with NAMUX 2: use P94-1567
- T700: use P94-1944

Heater and A/C Operation

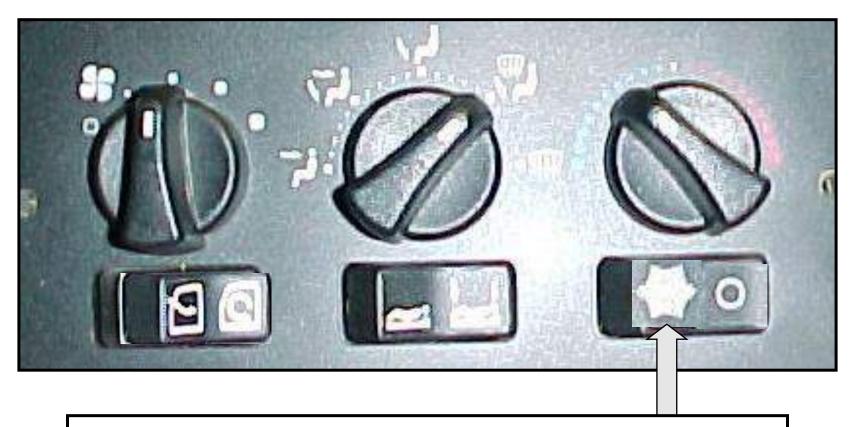
"B" Cab System

T2000 System

(T2000 and T700 use a Bergstrom system)

APADS System

September 1, 1996 through October 26, 1998 First rudimentary full climate control system



Automatic Temperature Control No A/C switch on the control panel

APADS-Bypass

Most APADS Systems Updated (TIB 01-42B)

A/C switch on the right side of the control panel

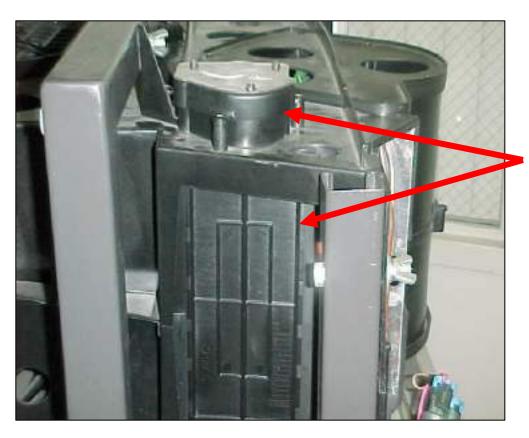
Non-APADS

October 27, 1998 to NAMUX 2

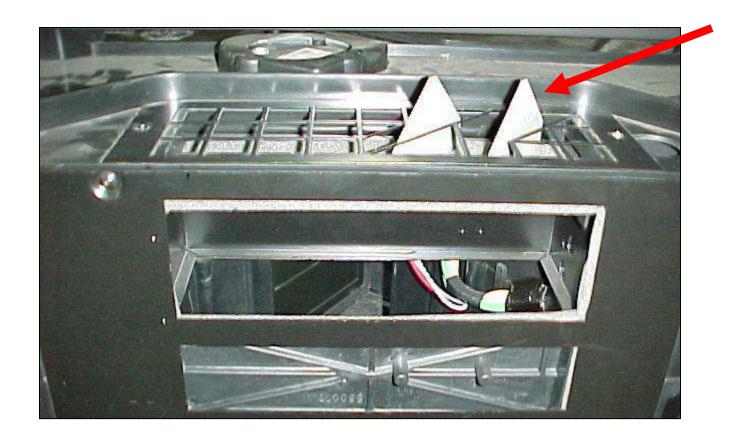
A/C switch on the left side of the control panel

Control Circuit for the BY-PASS

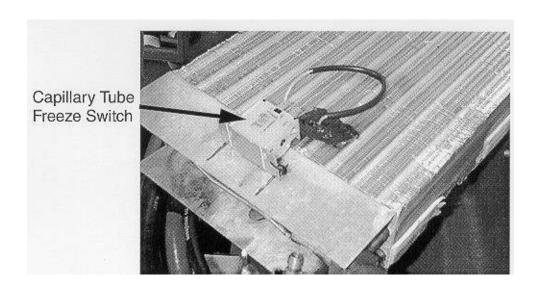
- T2000 (APADS By-Pass) TIB 01-42A
- When removing APADS, the C102ACP is connected to the P30CHD changing the High PSI Switch, Low PSI Switch, and the Freeze Switch to power side of the control circuit.


Blower Controls

The T2000 has the cab blower circuit wired up as ground side switching and sleeper blower circuit is the opposite - power side switching.


Fresh Air Door Control

T2000 - uses an electric actuator to control fresh air door using voltages of 12V and <1V


Mode Control Doors

Put unit into defrost mode before removing unit from under dash, as the tabs will be damaged during removal otherwise.

Freeze-Switch

Both B-Cab and T2000 trucks use a freeze switch in the ground side of the HVAC relay control circuit

Freeze switch opens at 31.5°F and closes at 40°F

Pressure Switches

T2000 - Uses low and high pressure switches in the relay control ground circuit. (Similar to B-Cab after 2007)

- Low pressure settings opens at 10 +/- 4 psi
- High pressure setting opens at 350 +/- 20 psi

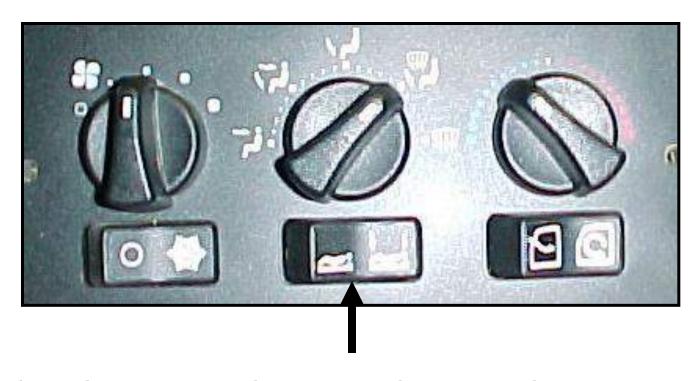
T2000 w/NAMUX 2

- Electrically actuated mode controls
- 4 Blower fan speeds (Low, Med-lo, Med, High) controlled by a resistor block
- 1 HVAC Relay
- High & Low Pressure Switches
- Fan Switch

Operating Temperatures

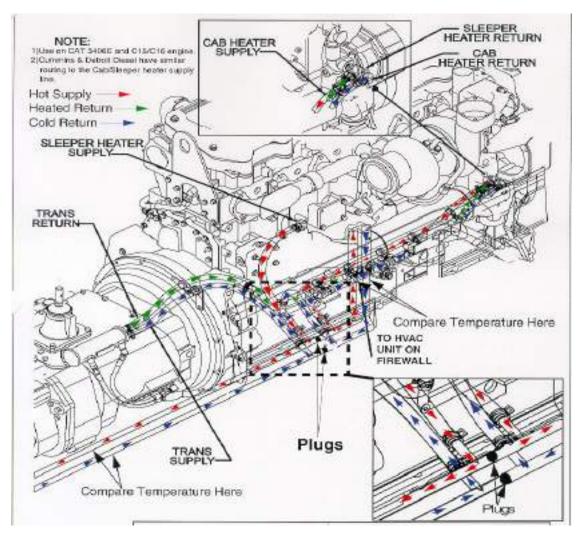
T2000 R-134a Ambient Sweep Data

	Cab Unit		
Outside Air	Center Duct	Discharge	Suction
Temp.(Deg F)	Outlet Temp.	Pres.(psig)	Pres.(psig)
70	48-53	110-135	14-30
80	50-55	130-145	22-28
90	55-60	150-165	25-31
100	58-63	170-185	28-34
110	62-67	215-230	33-39
	Bunk Unit		
Outside Air	Lower Duct	Discharge	Suction
Temp.(Deg F)	Outlet Temp.	Pres.(psig)	Pres.(psig)
70	43-48	110-135	14-30
80	45-50	130-145	22-28
90	50-55	150-165	25-31
100	53-58	170-185	28-34
110	56-61	215-230	33-39


Engine Fan on Manual

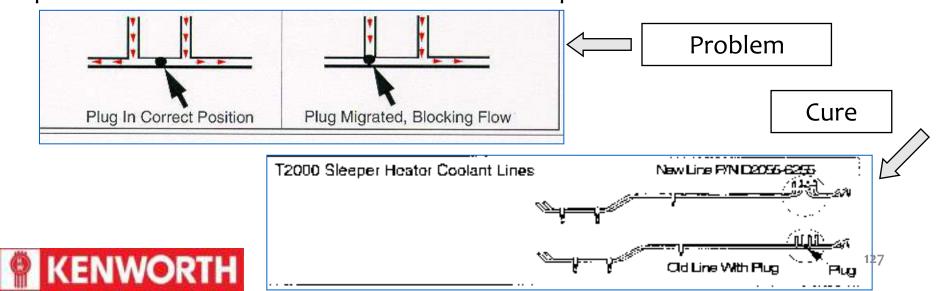
Engine RPM @ 1500

Doors and Windows Open


Sleeper-Control

The Sleeper Rocker Switch controls power to the Sleeper Control Panel through circuit number P124SHA.

T2000 Sleeper Heater Lines



* No Heat From Cab and/or Sleeper

TIB 01 - 43

- 1. Run engine to operating temperature
- 2. Turn Cab & Sleeper heater controls to maximum heat position (Do not select Defrost Mode, A/C will cycle and heat up the A/C lines as well).
- 3. If no heat blows from cab or sleeper heater vents, check for heated coolant flow through supply lines.
- 4. If cab and sleeper heater supply lines are at operating temperature and about the same temperature, then coolant flow may be the problem. Verify correct operation of HVAC controls and blend air door operation.

T2000 Wrap Up

- Why spend time covering an almost 20 yr old truck system??
- There are still a small number of trucks still working every day with full OE APADS
- A significant number of trucks still in service with TIB converted APADS systems
- Most importantly, the TIB converted APADS systems became the basis for the T700 model truck A/C system

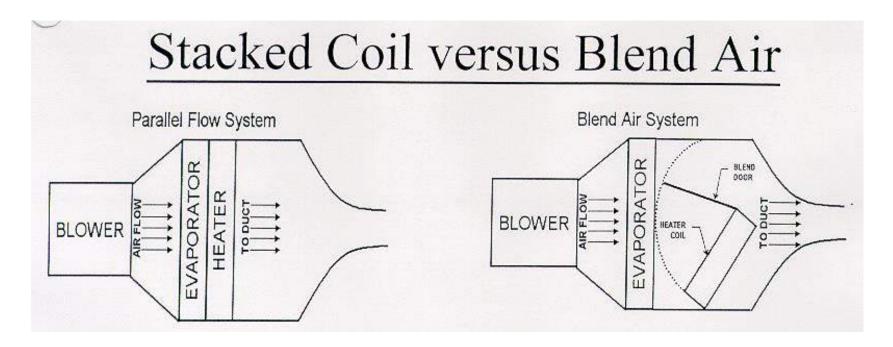
T700 (All Years)

- Electrically actuated mode controls
- 4 Blower fan speeds (Low, Med-lo, Med, High) controlled by a resistor block
- 1 HVAC Relay
- High & Low Pressure Switches
- Fan Switch

T680/T880 (2.1m Cab)

Kenworth Models

NGP (Next Generation Product)


Kenworth: T680, T880/Peterbilt: 579, 567

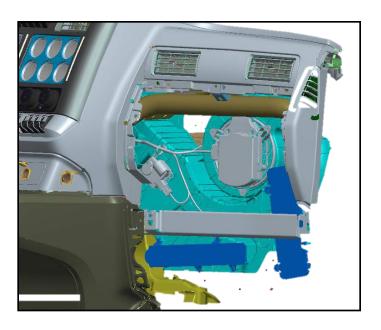
Heater and A/C Operation

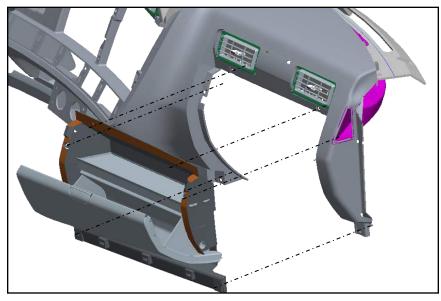
"B" Cab System

T680/T880 uses a Behr system

HVAC Electrical Components

Component	B Cab	NGP	
Compressor	Sanden	Sanden	
AC Relay	Yes Controls power to clutch	Yes Controls power to clutch	
High Pressure switch	2007 emissions engines	No	
Low Pressure switch	2007 emissions engines	No	
Binary Switch	1994 - 2006	No	
Blower Fan switch	yes	yes	
Blower motor	Yes	Yes – but	Direct DC Current
Resistor block with thermal fuse	Cab till 2002 – then linear power module	linear power module	Still used on all sleeper modules
Freeze switch	Yes	No	
Engine fan switch	Yes	No	133




Cab HVAC

Cab HVAC Service Location

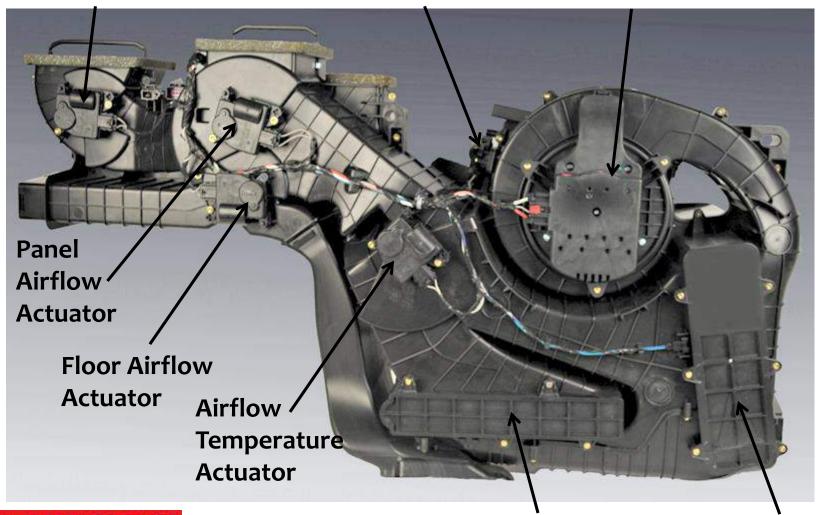
- HVAC Components Are Serviced By Removing The Glove Box And Dash Trim.
 - Blower Motor, Actuators, Heater Core, Evaporator, Freeze Sensor, Air Filter.
- Components Not Serviceable Through Glove Box Opening.
 - Plastic Housings, Air Directing Doors, Foam Seals, IP Ducts.

Actuator Service

Actuators In Red

- Disconnect battery power from HVAC.
- Remove glove box & b-panels to access actuators.
- Disconnect the wire harness connector.
- Remove (2) T-20 torx screws.
- Replace actuator and connect wire harness.
- Replace trim panels.
- Connect battery power and listen for HVAC to calibrate.

Actuators In

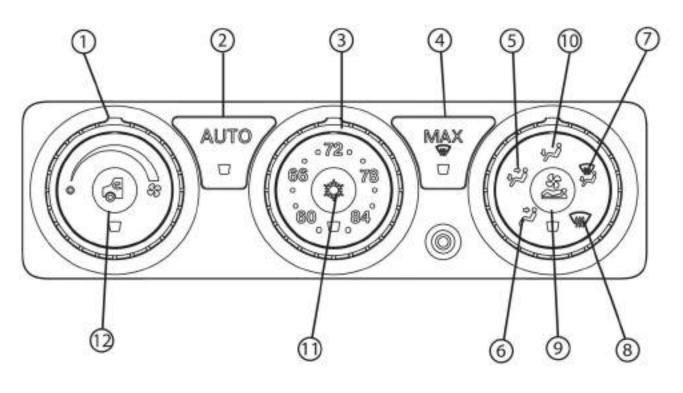

Red

Cab HVAC Unit

Defrost Airflow Actuator

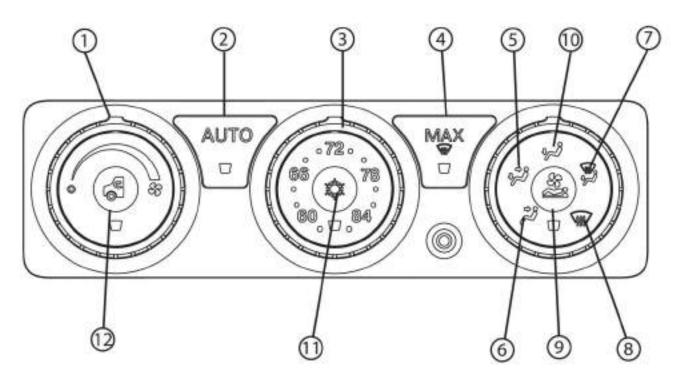
Fresh/Recirc
Airflow Actuator

BLDC Blower Motor

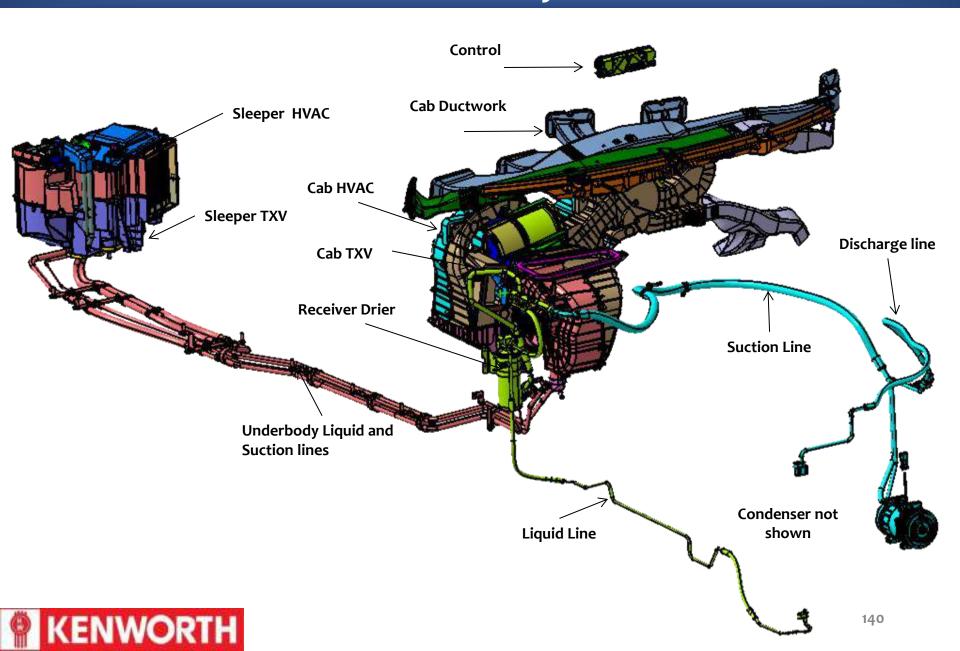


Heater Core

Evaporator Core


KW Cab Control With Bunk Override

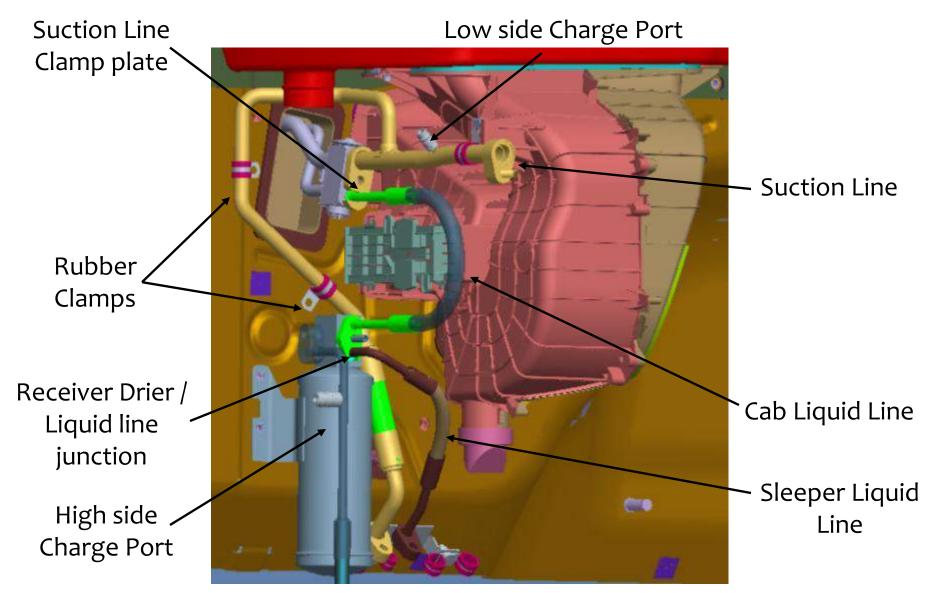
- 1. Fan Control Dial
- 2. AUTO Mode
- 3. Temperature Control Dial
- 4. Defrost Button
- 5. Dash & Floor
- 6. Dash


KW Cab Control With Bunk Override

- 7. Floor & Defrost
- 8. Defrost
- 9. Sleeper Override(if equipped)
- 10. Floor
- 11. Air Conditioner Enable
- 12. Fresh Air / Recirculate

NGP HVAC System

Firewall – Cab Only, HVAC R-134a Lines


Suction Line Clamp Low Side Charge Port **Suction Line** Liquid Line Receiver Drier /

Liquid Line

Junction

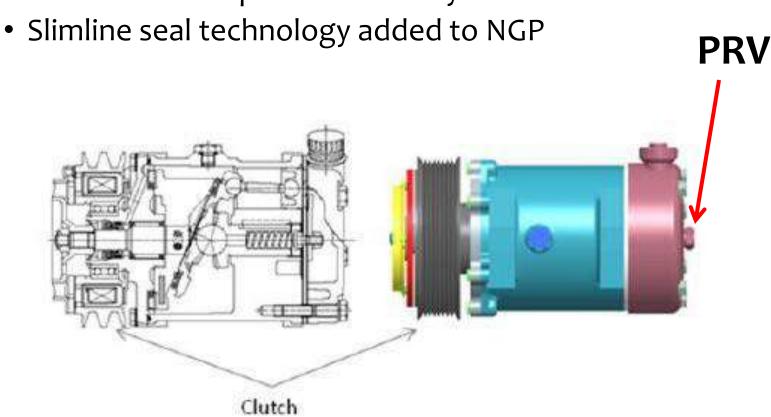
High Side Charge Port

Firewall – Cab & Sleeper, HVAC R-134a Lines

HVAC - Cab and Sleeper

Cab

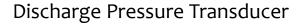
- ATC Automatic Temperature Control (temperature, mode and fan speed)
- Long-life Brushless DC (BLDC) blower motor double current component life
- Lightweight Aluminum Heater Core serviced thru glove box

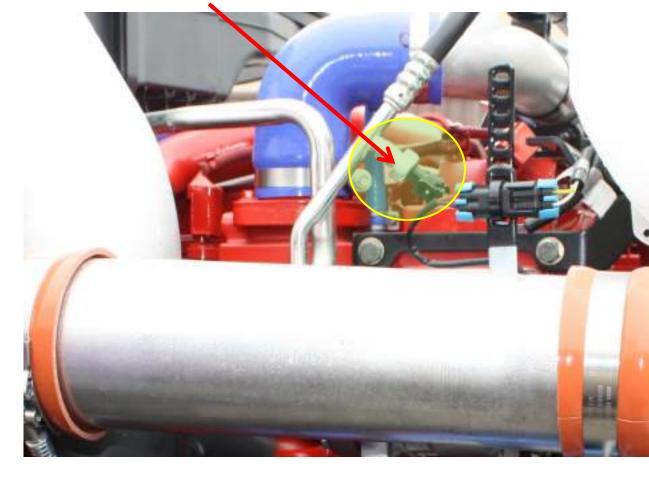

• Sleeper

- Register positioning optimizes sleeper airflow
- Filtered & re-circulated air (like home A/C) used to maximize heating / cooling performance
- Uses an additional recirculation filter in sleeper

Sanden Compressor

Same Sanden compressor as today

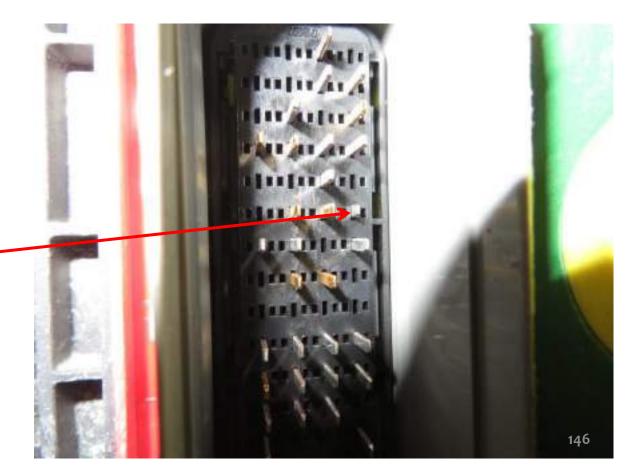




Discharge Pressure Transducer

Acts as a combination high/low pressure clutch switch. It will disable compressor when pressure is above 424 psi or too low.

Based on an algorithm using vehicle speed, pressure reading and ambient temp over 3 to 5 key cycles.

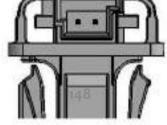


No fault codes for any HVAC issues

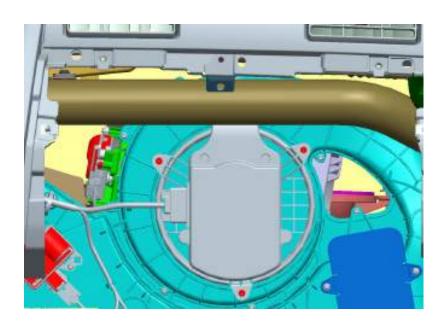
A/C would not cool because compressor would not engage. ESA showed Pressure transducer pressure at 427 PSI.

Transducer wires at fire wall connector

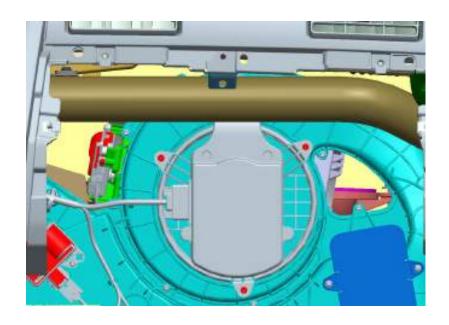
Evaporative Thermistor


Settings are approx. 39°F (4°C) and 46°F (8°C)

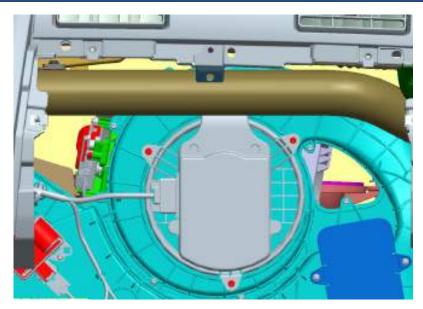
A/C Evaporator Sensor Resistance Values


Temp [°F]	R min [Ω]	R nom [Ω]	R max [Ω]	Temp [°F]	R min [Ω]	R nom [Ω]	R max [Ω]	Temp [°F]	R min [Ω]	R nom [Ω]	R max [Ω]
32	7200	9000	10800	54	3947	4934	5920	76	2259	2824	3389
33	6999	8749	10498	55	3844	4805	5766	77	2206	2757	3308
34	6804	8505	10206	56	3745	4681	5617	78	2153	2691	3229
35	6615	8269	9923	57	3648	4560	5472	79	2101	2626	3152
36	6432	8039	9647	58	3555	4443	5332	80	2051	2564	3076
37	6254	7817	9381	59	3464	4330	5196	81	2002	2502	3003
38	6082	7602	9122	60	3376	4220	5064	82	1954	2443	2931
39	5915	7394	8872	61	3290	4112	4935	83	1908	2385	2862
40	5754	7192	8631	62	3207	4008	4810	84	1863	2329	2795
41	5599	6998	8398	63	3125	3907	4688	85	1820	2274	2729
42	5447	6809	8171	64	3047	3808	4570	86	1777	2221	2665
43	5301	6626	7951	65	2970	3713	4455	87	1736	2170	2604
44	5158	6448	7737	66	2896	3620	4344	88	1695	2119	2543
45	5020	6275	7530	67	2824	3530	4236	89	1656	2070	2484
46	4885	6107	7328	68	2755	3443	4132	90	1618	2022	2427
47	4755	5944	7133	69	2686	3358	4029	91	1580	1975	2371
48	4629	5786	6943	70	2620	3275	3930	92	1544	1930	2316
49	4507	5633	6760	71	2555	3194	3833	93	1509	1886	2263
50	4388	5485	6582	72	2493	3116	3739	94	1474	1843	2211
51	4273	5341	6410	73	2432	3040	3648	95	1440	1800	2160
52	4161	5202	6242	74	2373	2966	3559	-	-	-	-
53	4053	5066	6079	75	2315	2894	3473	-	-	-	-

R min and R max values for the Evaporator Sensor are given a ±20% tolerance to account for variations in measurement equipment

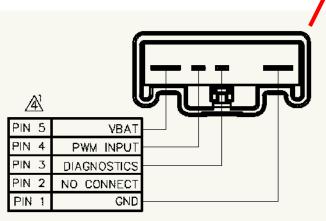

Cab HVAC Blower Motor

- Brushless DC Motor
- Integrated Linear Power Module is cooled by system air flow through vented cover.
- Thermally Protected maximum temperature of 221°F (105°C)


Cab HVAC Blower Motor

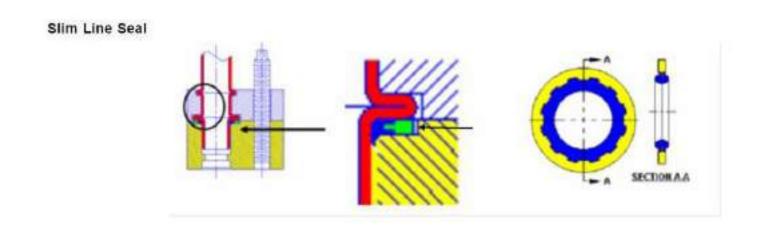
- The fan speed is controlled by a 35Hz PWM signal provided by the control head. Voltage on this wire varies with the position of the fan knob from ~12V @ low to >1 V @ max.
- This is similar to the LPM control signal on the B-Cab models.
- Do all diagnostic testing in cab with wires connected normally,
 DO NOT bench test.

Cab HVAC Blower Motor - DTC 1553



- Check blower operation in manual mode
- Check for good power and ground at blower motor connector pins 5 (V bat) and pin 1 (Gnd)
- You <u>can not</u> check resistance test through Cab DC motor
- Check wiring continuity between control head and signal wire

Testing Brushless Blower



Multi meter have negative lead in pin 1 and have the positive lead at PWM input pin 4 to check for 35hz signal

Slim Line Seals

- Slimline seal technology instead of O-rings
- Superior sealing properties to O-rings
- Slimline technology decrease the leakage rate by more than 50%.
- Slimline seals at ALL A/C connections

Per Parker Engineering (manufacturer of the seals), these are not to be lubricated during installation.

Expansion Valve HVAC Lines - Torque

Component	Torque		
Expansion valves to evaporator bolts	3.3 lb-ft ± 0.3	4.5 Nm ± 0.5	
All other AC connections	15.5 lb-ft ± 2.2	21 Nm ± 3	

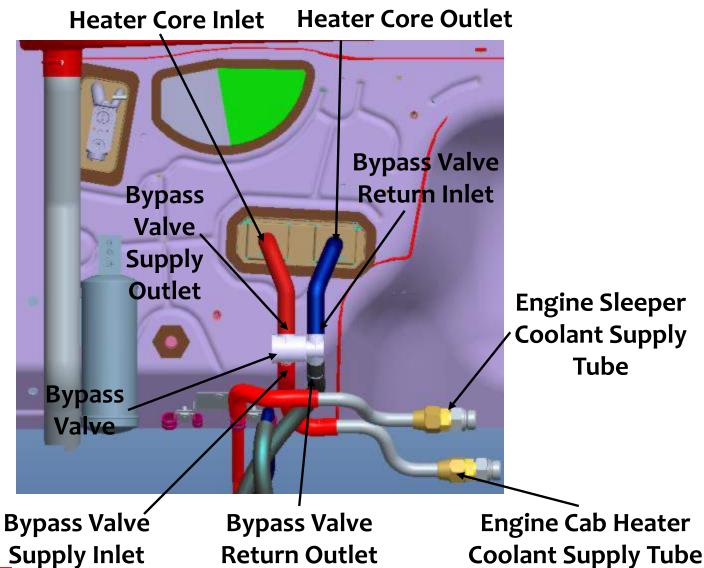
PACCAR Evaporator Line Twist

Bench Top Vice With Evaporator Secured

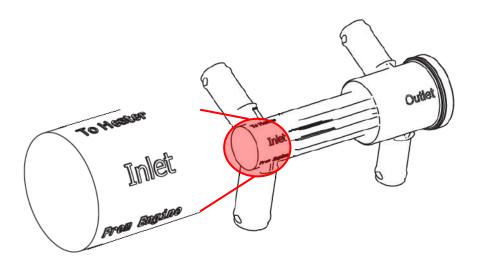
PACCAR Evaporator Line Twist

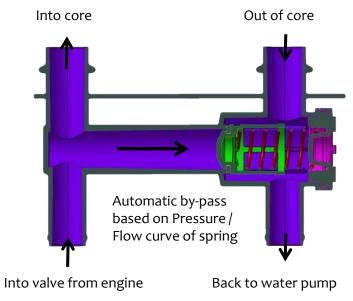
21Nm (per spec) applied to line fastener nut without securing TXV will result in ~10-15 degree movement of TXV due to the liquid and suction lines relative to evaporator moving.

Finished Position of TXV Relative to Evaporator after Torque Applied


Starting Position of TXV Relative to Evaporator Before Torque Applied

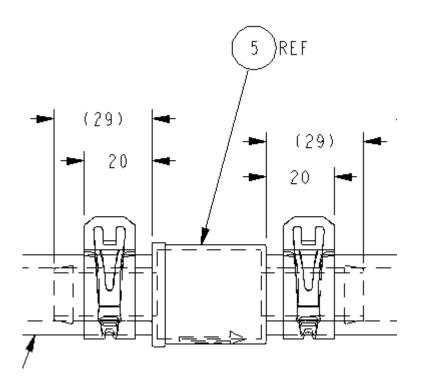
Parts pressure tested using 250psi of Nitrogen and being held under water for 30 minutes to review for airbubbles (an indication of a leak) There were no leaks But -


Firewall – Cab & Sleeper, Heater Lines


Front View

Cab Heater By-Pass Valve

- Protects heater core from high coolant pressure/flow (max is 6.5 GPM).
 - Maximizing Life Of Heater Core.
 - Allows Flow Up To A Defined Point.
- Valve is flow directional.
- Valve is serviceable as complete assembly.



Sleeper Heater Flow Restrictor

- The flow restrictor reduces the velocity of coolant restricting coolant flow to less than 5.5 gpm to eliminate cavitation of the sleeper heater core
- Located under sleeper, in the coolant line.

HVAC System Protection

Pressure Transducer

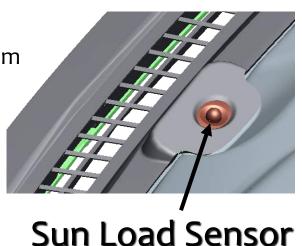
- Clutch Disengages at 424 psi (29.3 bar) Locks out compressor at 430 psi (29.6 bar)
- The fan clutch is requested on at 330 psi (22.8 bar) and requested off at 235 psi (16.4 bar)

Evaporator Thermistor

- Mounted in the HVAC unit
- Clutch Disengages if evaporator temp is 39°F (~4°C) or lower. Clutch is allowed to come back on when evaporator temperature reaches 46°F (~8°C.)


Compressor Pressure Relief Valve (PRV)

- Not a serviceable component part of the compressor
- Relief Valve vents the system at 508-595 psi

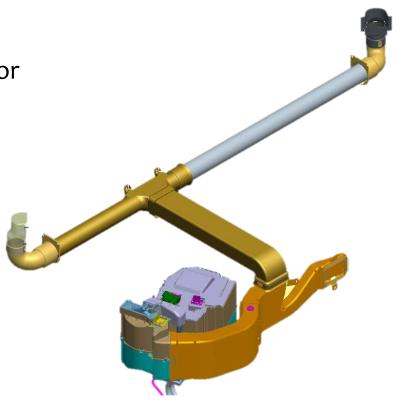


Other Sensors

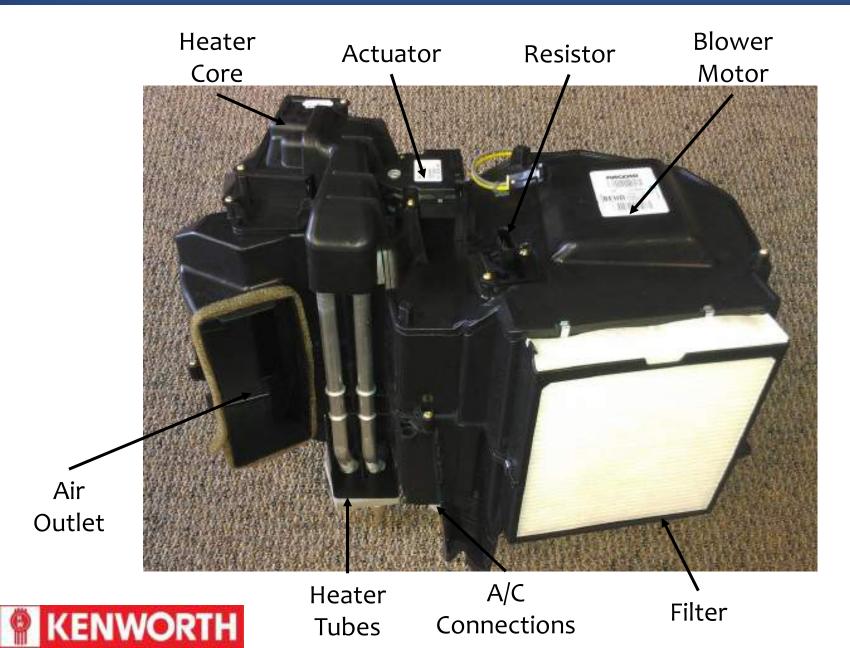
- Cabin Air Temperature Sensor
 - Integrated Thermal Optical Sensor, (ITOS sensor)
 - Located on the control head

- Sun Load Sensor
 - Located on driver's side of dash panel
 - This sensor measures the intensity of the sun and influences temperature control of the HVAC system
 - Do not block this sensor

Other Components


- Outside Air Temperature Sensor (OAT)
 - Located on the bottom of the driver's mirror
- Resistor
 - For the sleeper HVAC unit only
 - Is used to control blower speed by varying the voltage to the blower motor

Thermal limiter is set at 363°F (184°C)


Sleeper HVAC Overview

- Plastic Housings
- Aluminum Heat Exchangers
- DC Blower Motor With Resistor
- Pleated Air Filter
- 1 Electric Actuator
- Air Temperature Sensor
- TXV
- Service Cover

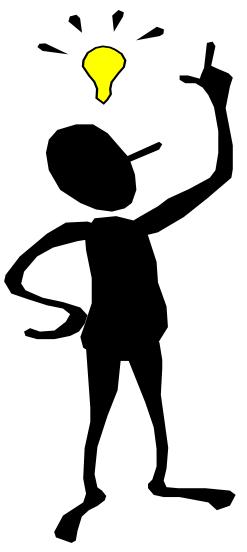
Sleeper HVAC Components

Sleeper HVAC Control

Fan Control A/C Enable

Temperature Control

Note: Sleeper AC function will not work without the sleeper enable button pushed on the *cab* HVAC control head.


The Sleeper Control Head "ENABLE" button provides a ground signal to the Cab Control Head.

Performance Testing & Mechanical Troubleshooting

Repair Strategy

- Verify Complaint
- Visual Inspection
- Record Pressures & Temperatures

Determine if the problem is Mechanical or Electrical!

If it is a Mechanical problem:

- Recover Refrigerant
- Make System Repairs
- Evacuate the System
- Recharge the System
- Performance Testing

Normalized Resting Pressures

RESTING PRESSURE-is the pressure when the AC system has been turned off for 15-20 minutes and equalized. (Chart 7-13)

ARE THE PRESSURES EQUAL?: Unequal pressures usually means that a restriction in the system is preventing the high side pressure from flowing into the low side when the clutch is off.

<u>High pressure</u> - means the system is contaminated (usually with air)

<u>Low pressure</u> - usually means most of the refrigerant has leaked out. Charge with at least 50 PSI and leak test. (KM811231)

Resting Pressures

AMBIENT TEMPERATURE ° F	SYSTEM PRESSURE psi	AMBIENT TEMPERATURE ° C	SYSTEM PRESSURE Kpa	
45	40.0	7.2	5.8	
50	45.4	10	6.6	
55	51.2	12.7	7.4	
60	57.4	15.5	8.3	
65	64.0	18.3	9.3	
70	71.1	21.1	10.3	
75	78.6	23.9	11.4	
80	86.7	26.7	12.6	
85	95.2	29.4	13.8	
90	104.3	32.2	15.1	
95	113.9	35	16.5	
100	124.1	37.8	18	
105	134.9	40.6	19.6	
110	146.3	43.3	21.2	

Operating Temperatures

CONVENTIONAL MODELS WITHOUT SLEEPER

Outside Temperature in Degrees F.	Center Duct Temperature	High Side Gauge Reading (PSI)	Low Side Gauge Reading (PSI)
70	43 - 49	95 - 130	7 - 14
80	47 - 51	100 - 135	10 - 17
90	53 - 57	120 - 155	14 - 21
100	59 - 63	155 - 185	19 - 26
110	65 - 69	185 - 205	24 - 31
High Homidity Adjustment	0 - 15	No change	High side of range

Performance testing:

Fan on high

Doors or windows open

Switch on fresh air

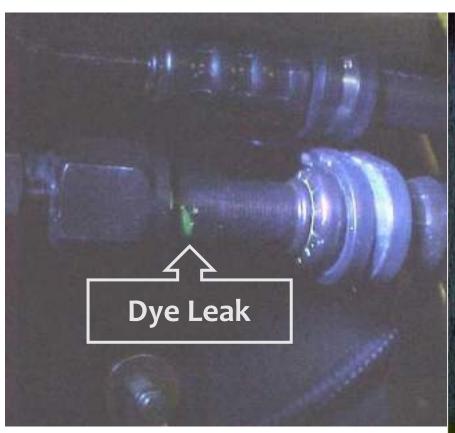
Manual over ride switch on (Engine fan running)

Run engine at 1500 rpm

THE HUMIDITY IS OVER 70% THE DUCT TEMPERATURES WILL BE FROM THE SAME AS IN THE WASTER TABLE TO 15 DEGREES MORE

Leak Testing

- 1. Make sure A/C system has at least 50 psi refrigerant charge.
- 2. Make sure detector is rated for type of refrigerant used.
- 3. Calibrate tester close to where you will be working
- 4. Hold the tip about 1/2" below where you want to test and move the tip slowly (moving too fast may push R-134a away).
- 5. Follow the entire route of the A/C system
- 6. Test the evaporator by using the blower to clear out residual R-134a, then wait about 5 min. for more to accumulate and check by inserting test probe under a dry drip tube.



Leak Testing (Nitrogen)

- Nitrogen should be used to charge the A/C system, then use soap solution to look for leaks.
- 2. Shop air should NEVER be used to check for leaks. Compressed air can inject moisture into the system, damage system components, and possibly cause bodily injury.
- 3. After charging the system with approximately 60-70 (* 200 max) psi of nitrogen, apply the soap bubble solution to all connections.
- 4. Bubbles will be generated at any leak site(s).

TIB 01-48 Leak Detection Fluorescent Dye

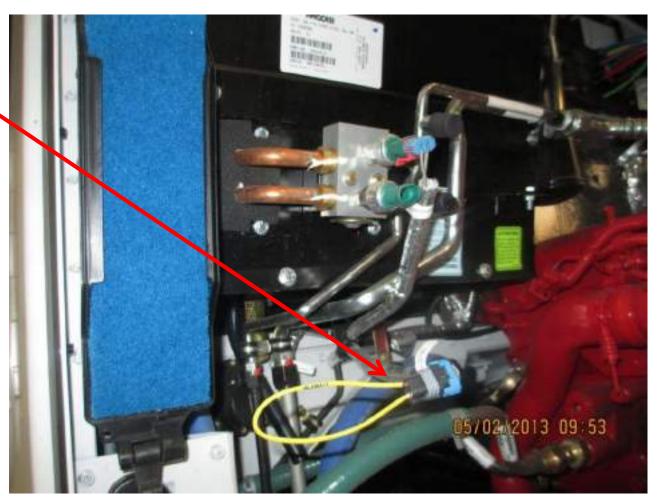
Dye wafer - Factory
Installed since 10/29/01

ATTENTION

This air conditioning system contains a R134a fluorescent dye for leak detection. Inspect with a high intensity ultraviolet lighting system.

Performance Test - Compressor

Fast compressor cycling can be caused by:


- system overcharge
- system contamination
- system undercharge
- bad freeze switch
- checking system at cooler temperatures

Faster cycling times are caused by low pressure side reaching low pressure switch cut out pressures under low load conditions (low ambient temperatures). Sanden recommends no more than 4 clutch cycles per minute and the suction pressure to be 7 psi or above.

Performance Test - Compressor

It is OK to bypass low pressure switch to do performance test once you are sure system is approximately at right charge.

System Troubleshooting

GAUGE READINGS	THERMOMETER READINGS	POSSIBLE OBSERVATIONS	POSSIBLE CAUSES	FURTHER TROUBLESHOOTING	
High Side: low Low Side: low	high to little below ambient	Almost no R-134a in the system. Oil drips below fittings.	Low R-134 a due to leak, lack of maintenance or undercharging	Thorough leak detector test	
High Side: low Low Side: very low	ambient	Binary switch open/compressor not running. Oil drips below fittings.	No R-134 a due to leak or lack of maintenance	Thorough leak detector test	
High Side: high Low Side: high	ambient or warm	High side hoses hot.	Condenser improperty aligned Overcharged R-12 contamination	Condenser inspection Recover and recharge Recover and dispose of contaminated R-12	
High Side: high Low Side: normal to low	ambient or warm	High side hoses or condenser with hot and cool spots.	Condenser blocked Hose or condenser blockage	Condenser inspection: checkfor spot it changes from warm to cool. Inspect Hoses for restriction	
High Side: low Low Side: high	ambient to warm	Compressor belt shiny. Compressor clutch not engaging. Compressor making noise.	Compressor belt loose or worn Compressor clutch not engaging Compressor failing	Compressor inspection. Electrical test of clutch and clutch circuit.	
High Side: high Low Side: low to very low	high to a little below ambient	Normal sight glass. Compressor running, not cycling. Moisture indicator pink.	Blocked or failed expansion valve	Check sleeper unit Warm the expansion valve/ evaporator. Bench Test the expansion valve.	
High Side: normal to high Low Side: low to very low	high to a little below ambient	Compressor running, not cycling. Frost on low side hoses.	Low side hose blocked/ kinked	Inspect hoses.	
High Side: normal Low Side: high	high to ambient	Compressor running, not cycling. Low side hoses sweating.	Expansion valve failed open	Warm the evaporator/ expansion valve. Bench test the expansion valve.	
High Side: normal high Low Side: normal to low		Compressor running, not cycling	Coolant leaking through heater core Freeze switch stuck closed Evaporator fins clogged	Measure duct temperature with AC off. Electrical test freeze switch. Warm evaporator with a heater. Physically inspect evaporator core.	
High Side: low Low Side: high	high	Compressor clutch not engaging	Binary switch low pressure cut-out point too high	Check refrigerant charge level. Electrical test of binary switch.	

Evaporator Performance

Check the evaporator performance after the first fifteen (15) minutes of operation.

- Operate truck with windows rolled down.
- Insert thermometer in center vent while A/C system is operating. Compare reading to chart to see if within specs.
 - A general rule is the difference between ambient and duct temp should be 25 -30 °f.
- As a secondary check, compare evaporator lines there should be about a 5 15°f differential. (Temperature differential is very dependent upon ambient conditions, temperature & humidity).
- Check air flow through evaporator for debris or clogged cabin air filter (usually normal pressures)
- Check evaporator drains to make sure water is dripping and evacuator valves are on.

Condenser Performance

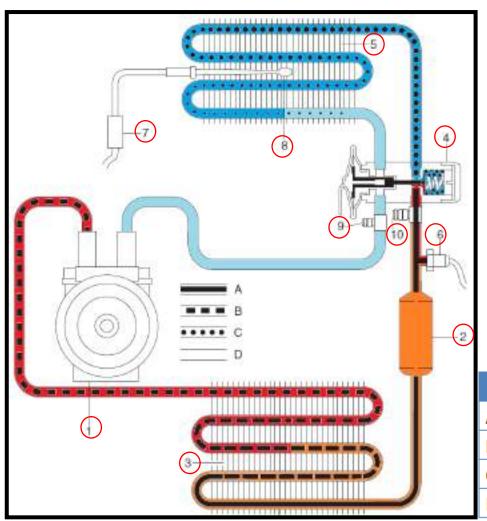
- Check temperature in (top) and out (bottom) should be 10 to 15 degree difference. Too much temperature drop could indicate a restriction. Remember, the temperature change is not as important as confirming a state change in the refrigerant.
- Check air flow and obstructions (oil coolers and winter fronts), bent fins, bent tubes and tight fittings
- Check to see if engine fan comes on, and at the right pressures
- Check to see that the hood closed correctly.

Saturation Point of Refrigerant

Many refrigerant gauge sets have an inner scale that reads the saturation (boiling) point of the refrigerant.

For the purposes of condenser and evaporator testing, use an average value based on the pressures during compressor cycles. (High side for condenser, Low side for evaporator)

Example: Gauge reads between 100 and 300 PSI during compressor cycling. Using an average of 200 PSI for the high side pressure, from outer scale – refrigerant changes state at 132 degrees F (inner scale) – use this temp for condenser performance testing.



High Side Pressure Chart

High side pressure	Temperature at which change of state occurs
90 psi	83 degree F
125 psi	100 degree F
150 psi	115 degree F
175 psi	125 degree F
200 psi	130 degree F
225 psi	138 degree F
250 psi	146 degree F

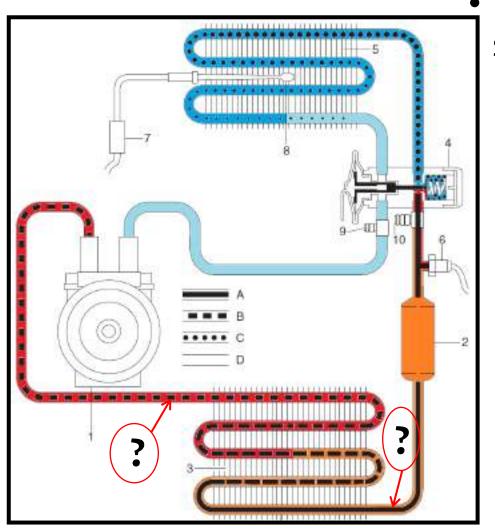
Inspecting the A/C System by Temperatures

- When the system is functioning correctly:
 - The pipe between the evaporator (5) and the compressor (1) should be cold
 - The pipe between the compressor
 (1) and the condenser (3) should be hot
 - The pipe between the condenser

 (3) and the evaporator (5) (via the dryer 2) the pipe temperature should be between hot and cold.

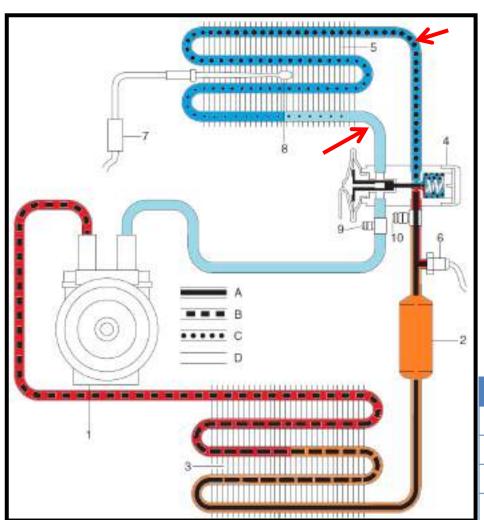
A/C R134-a Status

A: High pressure, liquid


B: High pressure, gaseous

C: Low pressure, liquid

D: Low pressure, gaseous


Inspecting the A/C System by Temperatures

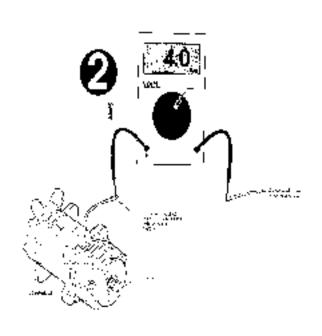
- Based on the average high side pressure:
 - the temperature of the high pressure line should be above the saturation temperature entering the condenser
 - the temperature of the high pressure line should be below the saturation temperature leaving the condenser.
 - THIS IS CRITICAL for system performance.

A/C System Temperature Inspection

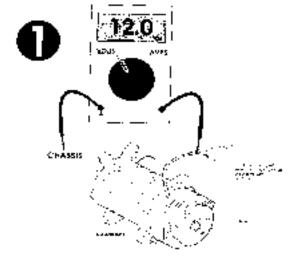
- There should be a ~10 degree
 F change across the
 evaporator core inlet and
 outlet pipes. (This can vary
 based on where the
 temperature readings are
 taken relative to the TXV.)
- The temperature drop from the center vent should be at least 20 degrees F.

A/C R134-a Status

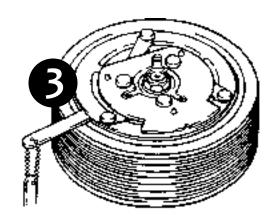
A: High pressure, liquid


B: High pressure, gaseous

C: Low pressure, liquid


D: Low pressure, gaseous

Compressor Clutch Performance



 Measure available voltage at the clutch (SYSTEM VOLTAGE or above 11.5 volts)

2. Measure current draw. (3.6 to 4.2 amps at 12 volts)

3. Measure Clutch air gap should be 0.016 - 0.031 inch.

Operational Modes – Automatic (ATC)

- The controller will regulate cabin comfort automatically with inputs from:
 - ITOS (in-cab temp) sensor
 - Sun Load Sensor
 - CECU via C-CAN (incl. coolant temp, outside air temp, engine coolant temp, engine speed, vehicle speed)
- The control will have a full automatic mode, temperature, and fan operation once the ATC has been activated.

Operational Modes – Automatic (ATC)

- The controller will regulate cabin comfort automatically with inputs from:
 - ITOS (in-cab temp) sensor
 - Sun Load Sensor
 - CECU data via C-CAN
 - coolant temp
 - outside air temp
 - engine coolant temp
 - engine speed
 - vehicle speed
- The control will have a full automatic mode, temperature, and fan operation once the ATC has been activated.

Operational Modes – Semi-Automatic

- When the HVAC control is placed in Automatic Mode, it is possible to manually override either the fan speed or the mode setting (floor, panel, bilevel, etc...).
- During the semi-automatic mode, the manually-overridden function will maintain its state whereas all other functions will vary based off of the ATClogic in order to attain the operated requested conditions.
 - Please note that the manual override of both the fan speed and the mode setting will result in the control head returning to a full manual functioning.
 - It should also be noted that the override of the A/C function will place the control head in full manual mode.
 - Selecting the recirculation function makes no functional mode change.

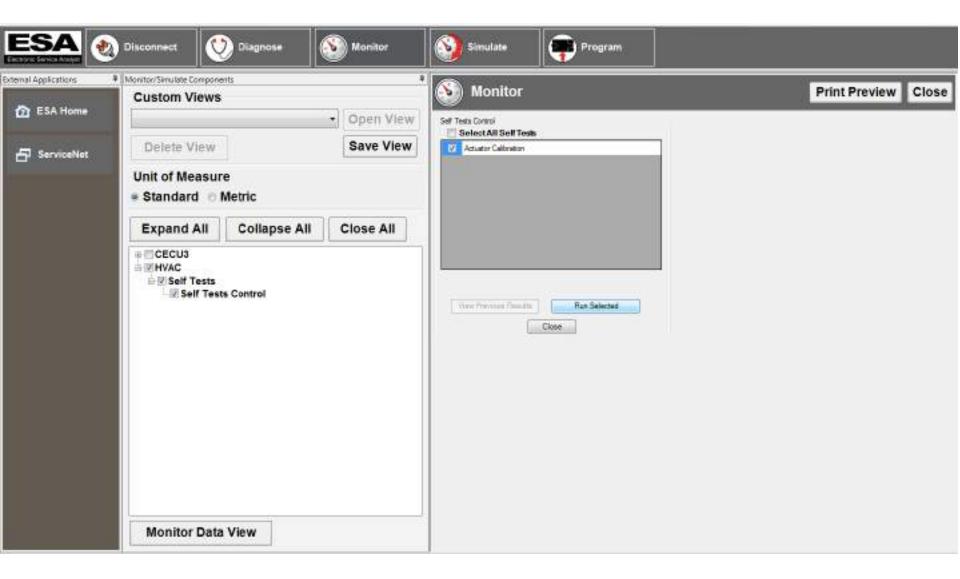
Operational Modes – 30% Recirculation

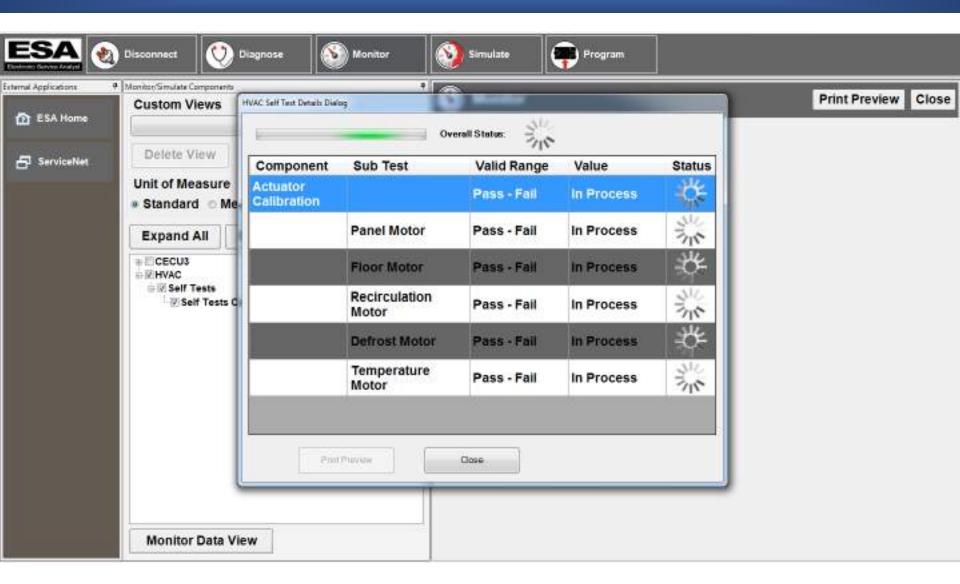
- When in "Fresh Air" manual mode, and the ambient temperature is below 23°F (-5°C), recirculation door will be set to provide 30% recirculated air to assist with heater performance.
- Normal operation will return when ambient temperature is above 32°F (o°C).
- Manual over ride (100% recirculation) is permitted.
- No other mode, including ATC, is impacted.

Operational Modes - Manual

- The HVAC module will keep the following constant:
 - blower speed,
 - mode position (panel, floor, etc..)
 - recirculation (fresh air or recirculated air)
 - compressor operation.
- The temperature door is able to reset it's position, to meet the operatorrequested temperature
- The temperature door position is fixed, when the temperature knob is set to max hot or cold. These are the only conditions where the HVAC operates in a true "manual" fashion.

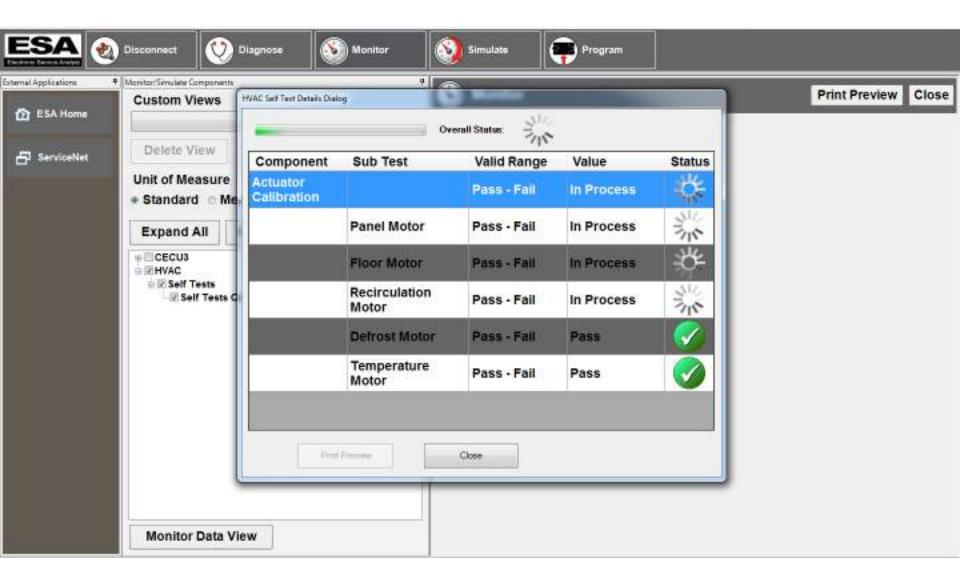
ESA Monitors

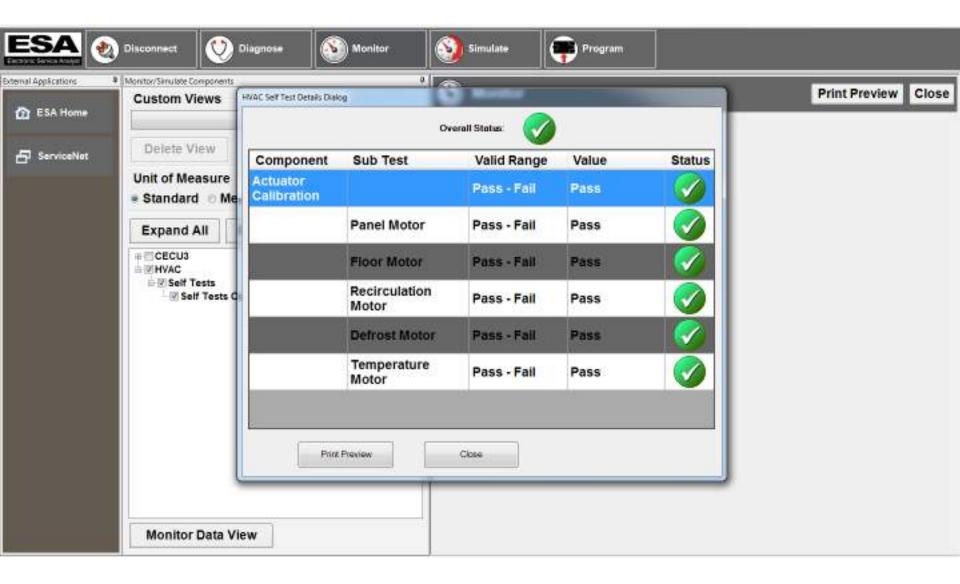

ESA Scan Tool Monitors

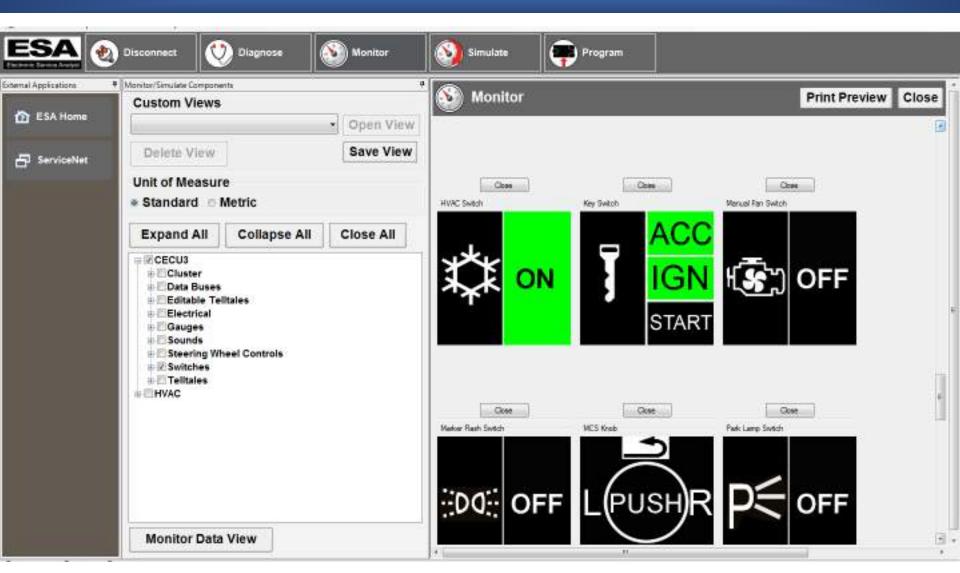

ESA Monitors

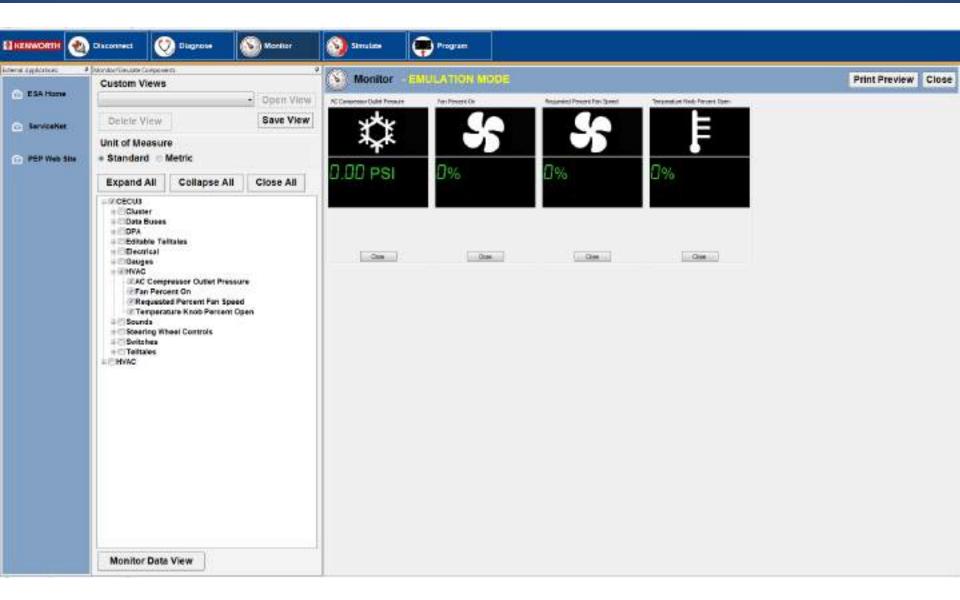
- HVAC Switch On/Off
- A/C Compressor Outlet Pressure Pressure the HVAC control head is seeing from Pressure transducer
- Fan Percent On engine fan request
- Requested Fan Speed the position of the fan knob
- Temperature Knob Percent Open the position of the temperature knob







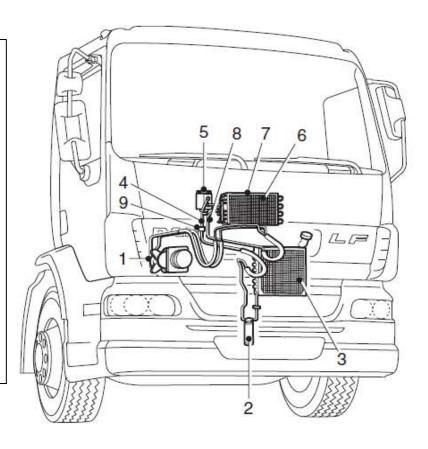




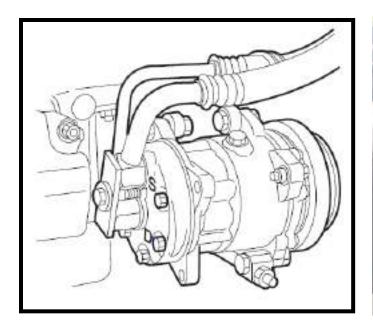
K370/K270 Cab Over Engine Medium Duty Trucks

Kenworth COE Medium Duty Models

COE Medium Duty Class 5, 6, 7 – K Series



HVAC System Layout


Pos	Description
1	Air conditioning compressor
2	Dryer
3	Condenser
4	Service valve, high-pressure side
5	Expansion valve
6	Evaporator
7	A/C compressor temp. switch
	(sited at the rear of the evaporator)
8	Service valve, low-pressure side
9	Air conditioning Switch. high/low press

The air conditioning system is a closed system filled with R134a refrigerant. The A/C Includes a 24V Compressor.

24V Compressor

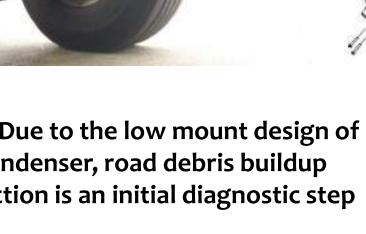
Sanden Compressor uses a 24 volt clutch

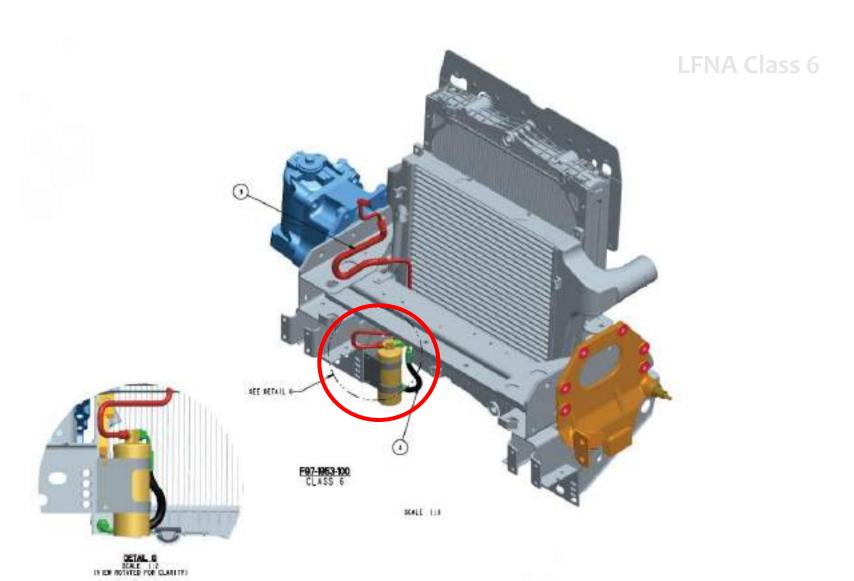
24 Volt A/C Compressor Clutch Specifications

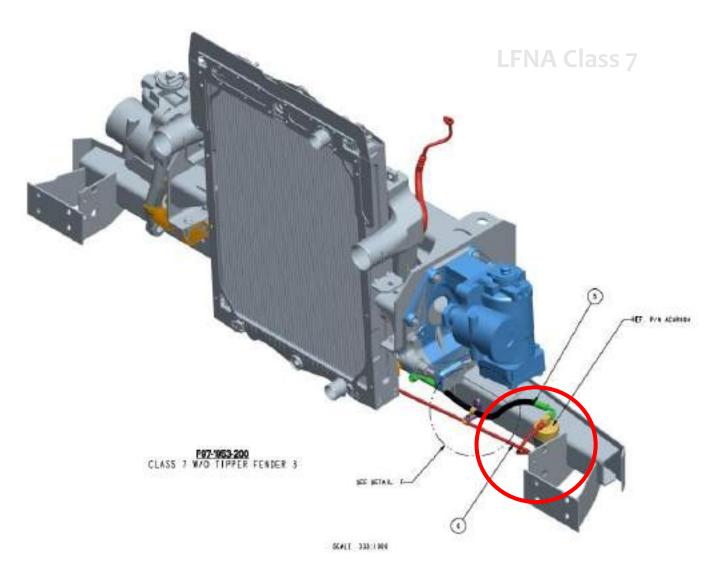
- Confirm that the clutch is receiving 22.5 V (minimum) for 24 V system engagement
- 24 Volt coil resistance should measure between 14.5 Ω and 18.2 Ω @ room temperature
- Air gaps exceeding 0.051" (1.3 mm) can prevent engagement. Specification is 0.016" 0.031" (0.4 0.8mm).

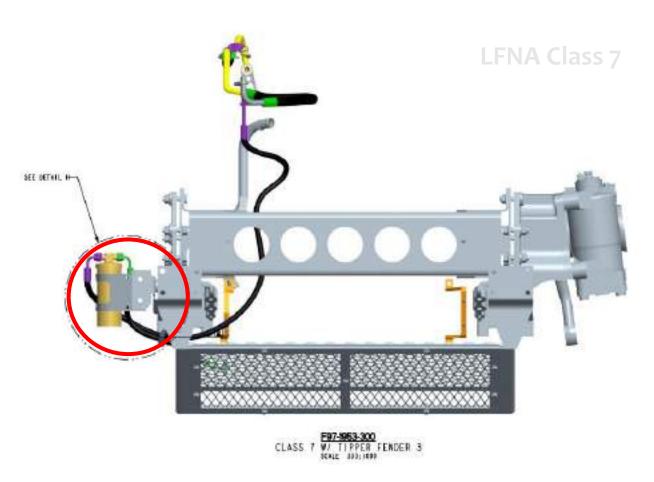
HVAC System Oil Capacities

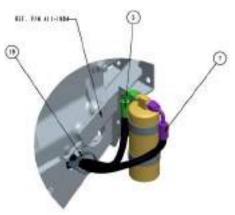
Filling Capacities		
A/C system coolant capacity	2 lbs (900 grams)	
Compressor oil type	PAG oil	
System oil capacity	6 oz (175 cc)	

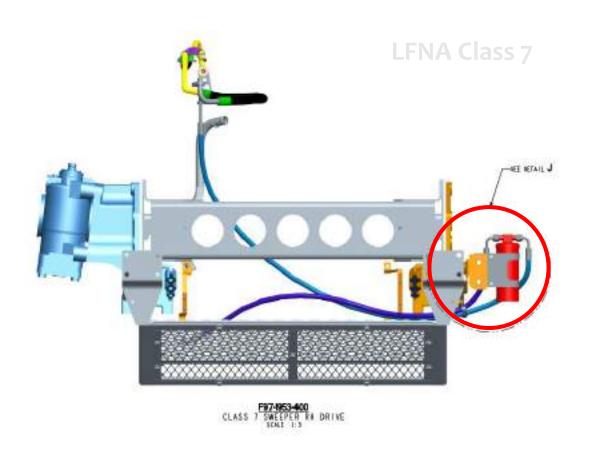

Compressor oil refilling quantity when replacing:		
dryer	0.6 oz (20 cc)	
condenser	1.7 oz (50 cc)	
evaporator	1.3 oz (40 cc)	
compressor	4.6 oz (135 cc)	
pipe	0.6 oz (20 cc)	

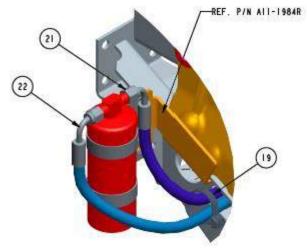

Condenser Location

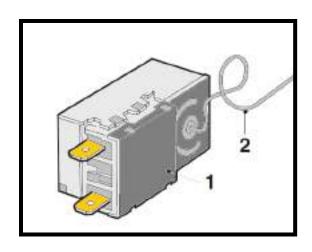

Note: Due to the low mount design of the condenser, road debris buildup inspection is an initial diagnostic step

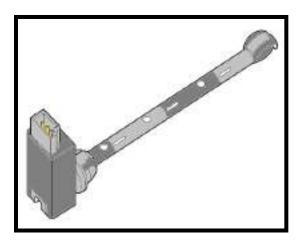










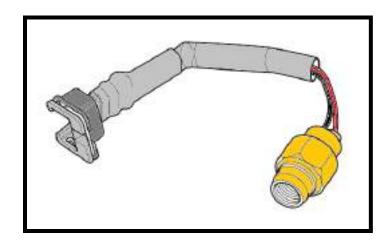


Evaporator Temperature Controls

- Cut-out temperature of compressor ≤36 °F (≤2 °C)
- Cut-in temperature of compressor ≥+45 °F (≥+7 °C)

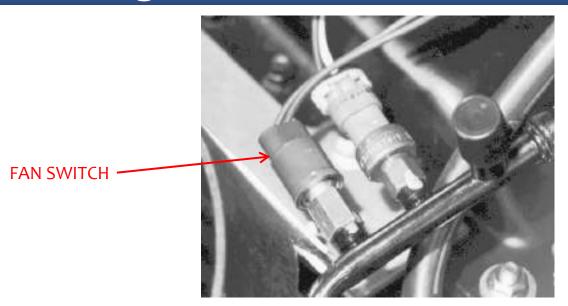
- Temperature Sensor
 - Cut-out temperature of compressor ≤+32 °F (≤+2 °C)
 - Cut-in temperature of compressor ≥+45 °F (≥+7 °C)

Temperature Sensor Fuse



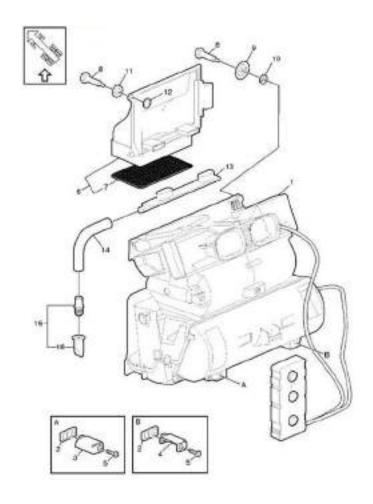
NOTE

In some vehicles, the temperature sensor has a 5-A fuse. This fuse is located in the cable harness of the temperature sensor.


High/Low Pressure Cut-out Switch

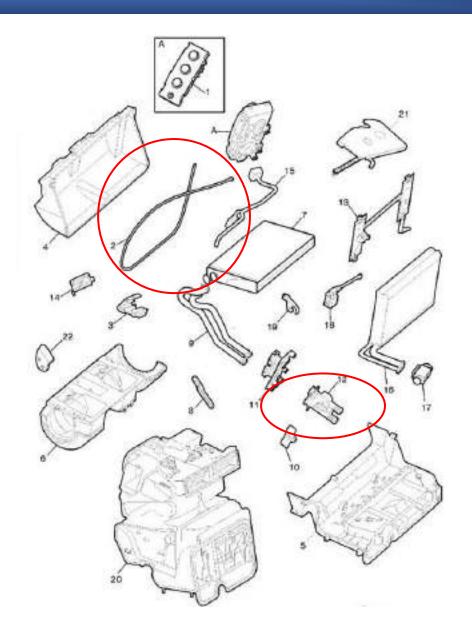
 System pressure at which the compressor is deactivated
 <29 psi and >464 psi (<2 bar and >32 bar)

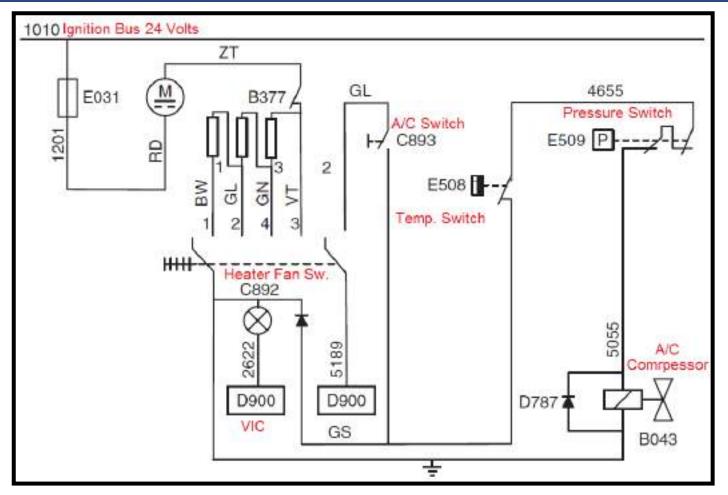
Engine Fan Override Switch



- The fan switch engages the electric engine fan when **high side pressures exceeds 275±10 psi.**
- The fan switch disengages the electric engine fan when the **high side pressures fall below 230±10 psi.**
- COE, off highway, and models with roof-mounted condensers may use a fan switch with higher set points. This reduces fan operation because of a slightly more efficient condenser which causes slightly lower operating pressures.

HVAC Control Panel




HVAC Heater Valve

Coolant flow to the heater core is controlled by a cable operated heater valve.

A/C System Operation - Electrical Circuit

The Compressor is energized by VIC via Temperature Switch and Pressure Switch. The VIC communicates with the engine ECU via V-CAN, and will de-energize the A/C circuit (GRA5189-0) when coolant temp goes above 216°F (102°C) and reenergize it when coolant drops below 208°F (98°C).

T170/T270/T370 Medium Duty Trucks

Kenworth Medium Duty Models

Medium Duty Class 5, 6, 7 – T Series

T-Series M/D HVAC

- NAMUX 2 for 2010 engines: use P94-1912
- NAMUX 2 for 2016/2017 engines: use S92-1117 (until S94-1007 is released)

T-Series M/D - NAMUX 2 with 2010 Emissions

(Pre- 1/11/2016)

- Electrically actuated mode controls
- Cable actuated heater control valve
- 3 Blower fan speeds (Low, Med, High) controlled by a resistor block
- 3 HVAC Relays
- High & Low Pressure Switches

KIMS (Kenworth Idle Management System)

Kenworth Idle Management System

Maximum Fuel Efficiency

To down a treat officiently you need out it no into rection — expecially two bid go when driven; must treat the parties seen of had, validate and safety options on the pt. The new foresettly from the treatment Genter office, at a global, executing you need to know about operating in the sevent spot between pertices one and efficiency. Thus disquestions of perturbance indicates paging up to she the driver with self-time bedfood. But picture is and must endo comparison, allow them to reconstruct a performance inventors and any

KENWORTH JOLE MANAGEMENT SYSTEM

Serworth's finday included by the process of a 5-side system is designed to help length and feets in but and cald offerebus reduce difficulties and feet arranged the stage of their processing portrons now to a spot system. Now worth the transposition open provides consort the send that butpered an the industry, allowing for maximum of once due to brank. It also features are lossed discretized, allowing for maximum of once due to brank. It also features are lossed discretized, and provides features are discretized and features greater than the control the unit, and provides features are discretized open district.

the compact boundaries for companies and responder solvescopin convenency or since in the proper disruptions.

The results continue with transition the accounty is adducted parties on the approximate was to addition continues.

Fe per pieto occido ett a 120 depte juntos attrado teaperakie i piatra toti AC autresta; piatra

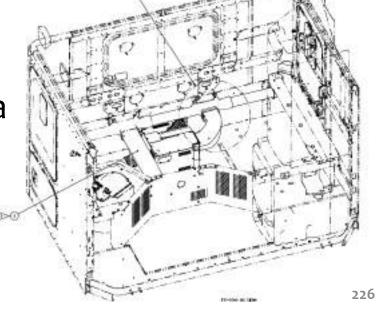
for imp 3) Alik rations well cally native has the lock one or disting table as in presence poles. The system ratios buffers went may reportation.

Kenworth Idle Management System

- KIMS SOP February 3, 2014
 - Available on Model T680
 - Peterbilt SmartAir launched July, 2013, all models 48" sleepers and larger
- PACCAR product is identical with the exception of condenser location, external refrigerant lines, and user interface
- Weight is listed at 565 lbs weight exemption 550 lbs

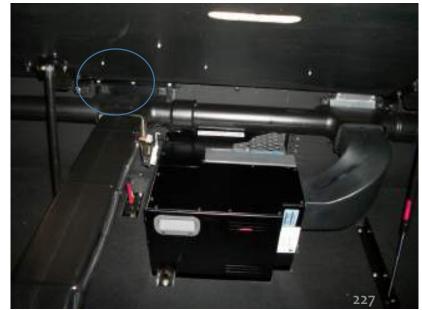
KIMS Features

- Engine-off No-Idle Operation only
 - Ignition Interlock
- Compliments standard sleeper HVAC
- Separate battery bank: 4 Deep cycle AGM
- Alternator requirement-300 amp
- 300 Amp Battery Separator
- Battery Management System (BMS)
- Duct gravity doors
- Vehicle insulation upgrade

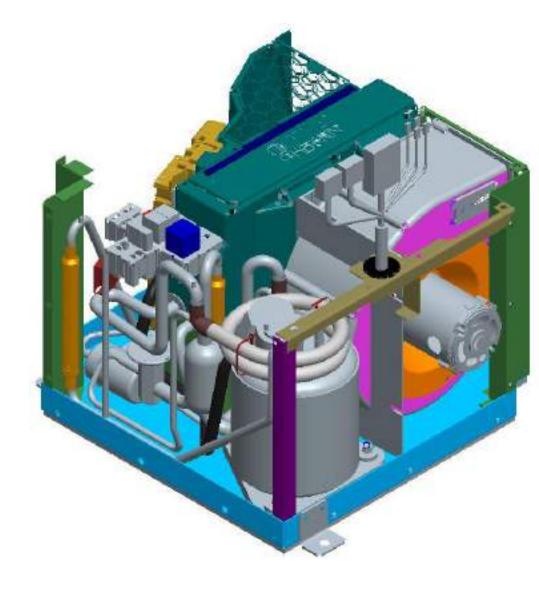

KIMS Components

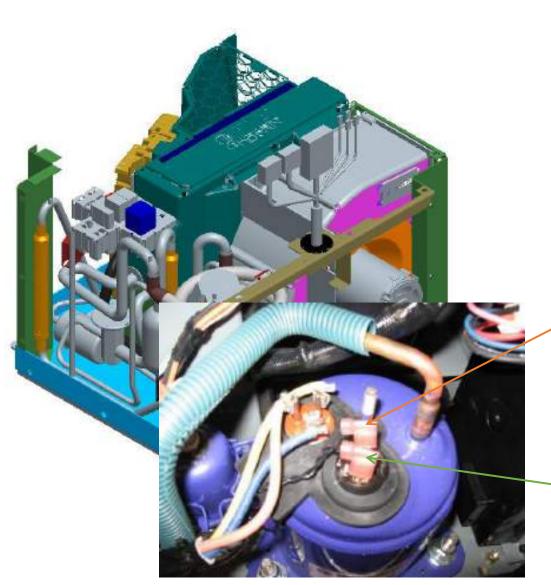
 The main unit resides under the sleeper bunk and contains the system's evaporator, blower, compressor and the air filter.

Since it's integrated, it has a very small under-bunk footprint to maintain storage space for drivers.



Gravity Door


- The gravity door is located in the fore/aft factory duct in the T68o.
- This keeps the KIMs system air from flowing back into the OE unit.


KIMS System Overview

- Sealed Electric Compressor
- Evaporation Coil
- Suction Line Heat Exchanger
- Blower Motor Assy.
- Electrical Center
- Serviceable Filter

Sealed Compressor

Compressor uses PVE oil only. Never contaminate with PAG oil

System can be evacuated and charged up to 3 times (21 oz or 1.31 lbs)

High Pressure switch normally closed - will open if pressure gets too high (non serviceable)

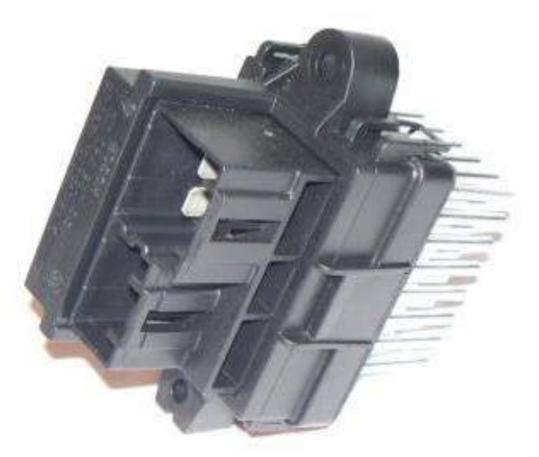
Thermal limit switch – normally closed and auto reset to protect compressor from high temperatures

Evaporator Inlet Filter

 This filter protects the evaporator coil from dust and debris. It is washable and should be serviced periodically during routine maintenance.

- When necessary, Check Filter indicator will notify you that the Evaporator filter must be cleaned or changed.
- To reset Check Filter: at screen 1
 press and hold enter button for
 3 seconds.

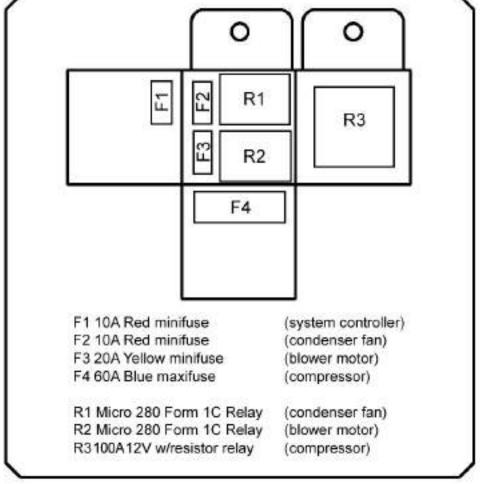
Discharge Temperature Sensor



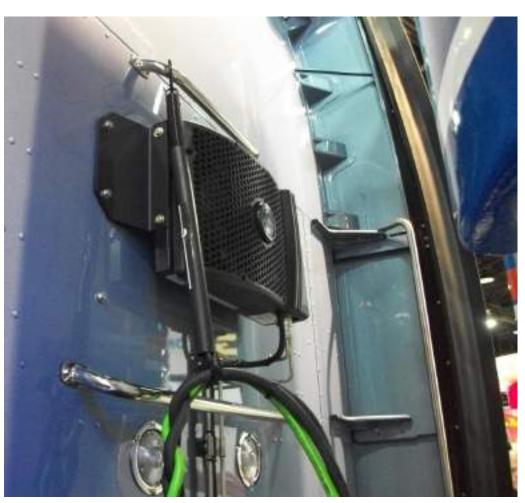
a.k.a. "the Freeze Switch":

This sensor monitors the evaporator outlet temperature as it enters the vehicle duct system.

Linear Power Module



This module controls the amount of voltage delivered to the evaporator blower creating variable blower speeds. It is located in the return air in front of the evaporator coil.


Electrical Center

KIMS External Condenser

 The condenser is mounted to the exterior of the rear sleeper wall.

KIMS External Condenser

- Brushless motor construction
- Quiet airflow characteristics

KIMS Batteries

Battery Separator Solenoid

Four auxiliary batteries are mounted on the exterior of the vehicle, to power the system in addition to the starting batteries.

KIMS Batteries

Typical Installation

The four auxiliary batteries are installed in the passenger side step assembly. This may relocate the SCR & DPF assemblies to the area between the frame rails.

Battery Management System

This device monitors the auxiliary batteries for state of charge, communicates with the KIM system and controls the battery separator solenoid.

LED light on this device indicates power to the device and does not provide diagnostics. Power inputs to this device are fuse protected.

If one of the BMS fuses blows, the solenoid will disengage.

Battery Separator Solenoid

This device connects the truck batteries to the Aux batteries. When the starting batteries are at or above 13.2 volts, the battery management device will engage the solenoid to allow the alternator to charge the auxiliary batteries.

When the voltage drops to or below 12.5 volts the battery management system will disengage the solenoid to prevent the truck starting batteries from being discharged below the engine start level.

KIMS User Interface

- User Interface features:
 - Default home screen
 - Temp set point, mode
 - Blower speed control
 - Battery "state of charge"level

KIMS User Interface

Icons indicate:

- Fan Speed
- Accumulative hours since last reset
- System error
- Temperature (60 85 degrees F)
- Auto temperature control
- Heat manual system mode
- Cool manual system mode
- Check filter clean or inspect
- Battery health charge status of auxiliary batteries

KIMS User Interface

- The user interface has a display screen on the top and 4 buttons on the bottom.
- The left button turns the unit on and off.
- The right button is the enter button and is used to select the setting to be changed.
- The up and down arrows allow the user to change system settings.

Turning on the system

Turning the system on requires one of these:

- Key switch in the off position
- Key switch in the accessory position
- Note: There is a 5 to 6 second delay when you key on and back off for system to shut down completely

The system will not turn on if the switch is in the IGN (on) position or the engine is running

KIMS Operation Tips

- Before operating the KIMS HVAC unit, the sleeper interior temperature should first be brought to the desired temperature with the engine running, and the bunk curtain open.
- The KIMS HVAC system is designed to maintain an established comfortable bunk temperature while the engine is off and the bunk curtain is closed.

KIMS Tech Tips

- Once the truck is shut down, the driver simply uses the control panel in the sleeper to maintain temperature control
- As a safeguard, the system features integrated power management to maximize cooling performance.

Retrieving Service Faults

- To enter SERVICE MODE: Push both the ON/OFF and ENTER button simultaneously, at any time.
- Display will show service indicator and a code #1- #2- #3.
 Use up and down arrows to scroll through the Fault Codes.
- DTC 01 Evaporator sensor open or shorted high
- DTC 02 Evaporator sensor shorted low
- DTC 03 High pressure switch open or shorted high

KIMS w/ KW Auto-Start

The systems are largely independent and they don't communicate directly with each other. But here is how they work together:

KIMS is powered from the truck Auxiliary (Aux) batteries.

• KIMS will draw the Aux batteries down to 0% state of charge (SOC) (approx 11.3 V) if Auto Start is not present or enabled

Auto Start monitors the truck Auxiliary batteries.

- If enabled, Auto Start will start the truck when Aux batteries reach 20%
- The batteries will continue charging until the Aux batteries reach 80% then engine will shut down.
- KIMS will continue to run during auto start engine run
 - KIMS shuts off if the key is in IGN to prevent KIMS from being left running while the truck is being driven. This shutoff does not apply to Auto Start events

Conclusion

This concludes the presentation.

Thank you for your attention!

Questions?

Conclusion

