FOREWORD

This manual covers the service procedures of the TOYOTA ELECTRIC POWERED FORKLIFT 7FBE10 to 20 series.

Please use these manuals for providing quick, correct servicing of the corresponding forklift models.

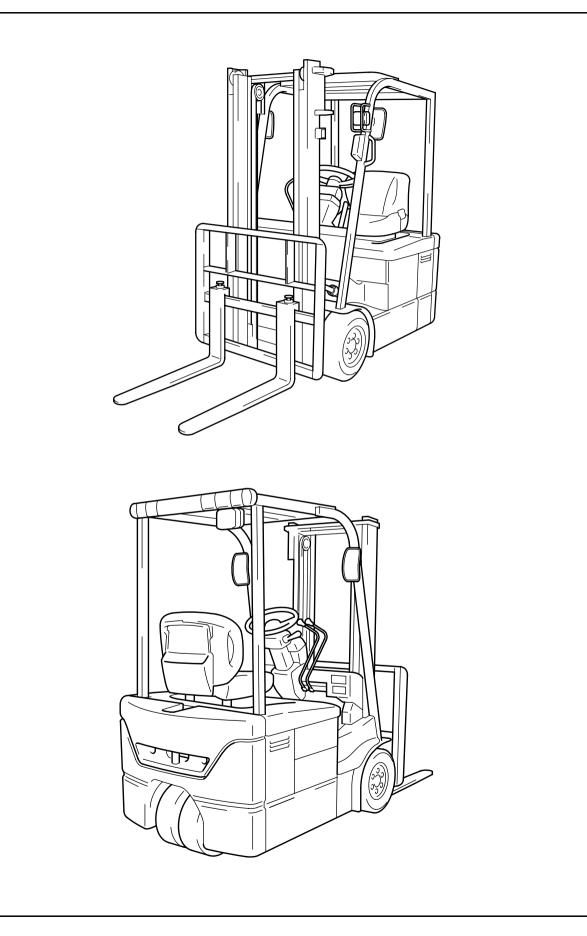
This manual deals with the above models as of February 2003. Please understand that disagreement can take place between the descriptions in the manual and actual vehicles due to change in design and specifications. Any change or modifications thereafter will be informed by Toyota Industrial Equipment Parts & Service News.

TOYOTA Material Handling Company

A Division of TOYOTA INDUSTRIES CORPORATION

SECTION INDEX

NAME	SECTION
GENERAL	0
BATTERY	1
CHARGER (OPT)	2
CONTROLLER	3
MULTI-DISPLAY FUNCTIONS	4
TROUBLESHOOTING	5
MOTOR	6
DRIVE UNIT & FRONT AXLE	7
REAR AXLE	8
STEERING	9
BRAKE	10
BODY & FRAME	11
MATERIAL HANDLING SYSTEM	12
MAST	13
CYLINDER	14
OIL PUMP	15
OIL CONTROL VALVE	16
SAS FUNCTIONS (OPT)	17
APPENDIX	18


GENERAL

Page
VEHICLE EXTERIOR VIEW0-2
VEHICLE MODELS0-3
FRAME NUMBER0-3
HOW TO USE THIS MANUAL 0-4
EXPLANATION METHOD0-4
TERMINOLOGY0-5
ABBREVIATIONS 0-5
SI UNITS 0-6
OPERATING TIPS0-7
GENERAL INSTRUCTIONS 0-7
JACK-UP POINT0-8
HOISTING THE VEHICLE 0-9
WIRE ROPE SUSPENSION ANGLE LIST0-10
SAFE LOAD FOR EACH WIRE ROPE SUSPENSION ANGLE 0-10
MEMBER WEIGHTS0-11
TOWING THE VEHICLE 0-11
ELECTRICAL PARTS INSPECTION0-12
NOTES ON SAS 0-14
STANDARD BOLT & NUT TIGHTENING TORQUE0-15
BOLT STRENGTH CLASS IDENTIFICATION METHOD 0-15
TIGHTENING TORQUE TABLE 0-16
PRECOATED BOLTS 0-17

	Page
HIGH PRESSURE HOSE FITTI	-
TIGHTENING TORQUE	0-17
RECOMMENDED LUBRICANT	
QUANTITY AND TYPES	0-18
LUBRICATION CHART	0-19
PERIODIC MAINTENANCE	0-20
PERIODIC REPLACEMENT OF	
PARTS AND LUBRICANTS	0-25

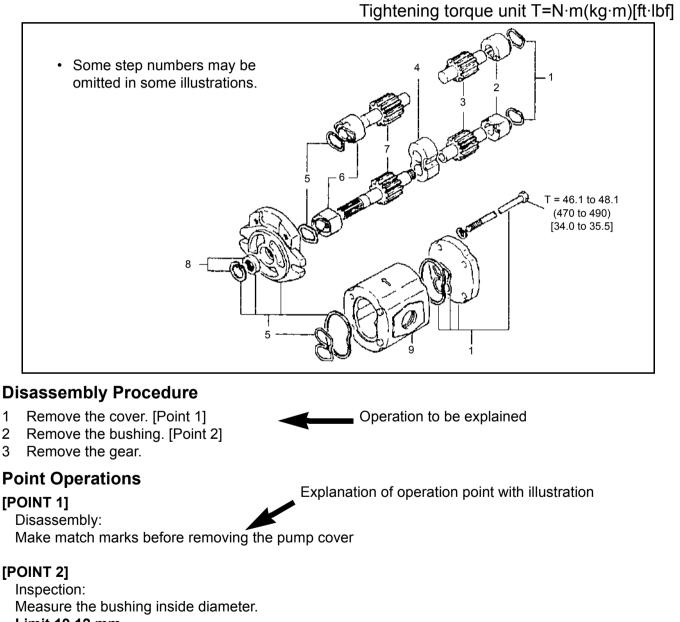
0

VEHICLE EXTERIOR VIEW

VEHICLE MODELS

Vehicle model code	Payload (ton)	Vehicle Model	Control method	Voltage (V)
10	1.0	7FBE10	AC microcomputer controller	48
13	1.25	7FBE13	\uparrow	\uparrow
15	1.5	7FBE15	\uparrow	\uparrow
18	1.75	7FBE18	\uparrow	\uparrow
20	2.0	7FBE20	\uparrow	\uparrow

FRAME NUMBER


Vehicle model	Drive motor model	Punching format	Punching position
7FBE10		7FBE13-50011	
7FBE13			
7FBE15	AR09	7FBE18-50011	
7FBE18			
7FBE20		7FBE20-50011	Punching position

HOW TO USE THIS MANUAL EXPLANATION METHOD

- 1. Operating procedure
 - (1) Operating procedures are described using either pattern A or pattern B.
 Pattern A: Each step of the operation is explained with its own illustration.
 Pattern B: The entire operation is indicated by step numbers in one illustration, followed by cautions, notes, and point operations.

Example of pattern B

DISASSEMBLY · INSPECTION · REASSEMBLY

- 1. How to read component figures
 - (1) The component figures use the illustration in the parts catalog for the vehicle model. Please refer to the catalog to check the part name.
- 2. Matters omitted from this manual
 - (1) This manual omits descriptions of the following jobs, but perform them in actual operation:
 - (a) Cleaning and washing of removed parts as required
 - (b) Visual inspection (partially described)

TERMINOLOGY

CAUTION:

Important matters, negligence of which may cause accidents. Be sure to observe them.

NOTE:

Important items, negligence of which may cause accidents, or matters in operating procedure which require special attention.

Standard: Value showing the allowable range in inspection or adjustment

Limit: The maximum or minimum value allowed in inspection or adjustment.

ABBREVIATIONS

Abbreviation	Meaning	Abbreviation	Meaning
ASSY	Assembly	SAE	Society of Automotive Engineers (USA)
ATT	Attachment	SAS	System of active stability
LH	Left Hand	SST	Special Service Tool
L/	Less	STD	Standard
OPT	Option	T=	Tightening Torque
O/S	Oversize	ООТ	Number of teeth (OOT)
PS system	Power Steering	U/S	Undersize
RH	Right Hand	W/	With

SI UNITS

Meaning of SI

This manual uses SI units. SI represents the International System of Units, which was established to unify the various systems of units used in the past for smoother international technical communication.

Item	New unit	Conventional unit	Conversion rate ^{*1} (1 [conventional unit] = X [SI unit])
Force* ²	N (newton)	kgf	1 kgf = 9.80665 N
Torque ^{*2} (Moment)	N∙m	kgf∙cm	1 kgf⋅cm = 9.80665 N⋅m
Pressure* ²	Pa (pascal)	kgf/cm ²	1 kgf/cm ² = 98.0665 kPa = 0.0980665 MPa
↑ (\uparrow	mmHg	1 mmHg = 0.133322 kPa
Revolving speed	rpm	rpm	1 rpm = 1 r/min
Spring con-	N/mm	kgf/mm	1 kgf/mm = 9.80665 N/mm
Volume	I	сс	1 cc = 1 mℓ
Power	W	PS system	1 PS = 0.735499 kW
Heat quantity	W∙h	cal	1 kcal = 1.16279 W⋅h
Specific fuel	g/W∙h	g/PS·h	1 g/PS·h = 1.3596 g/kW·h

New Units Adopted in SI

<Reference>

* 1: X represents the value in SI units as converted from 1 [in conventional units], which can be used as the rate for conversion between conventional and SI units.

* 2: In the past, kilogram [kg] representing mass was often used in place of weight kilogram [kgf], which should be used as the unit of force.

Conversion between Conventional and SI Units

Equation for conversion

Value in SI unit = Conversion rate × Value in conventional unit	Conversion rate: Figure corresponding to X in the conversion rate column in
	the table above

When converting, change the unit of the value in conventional or SI units to the one in the conversion rate column in the table above before calculation. For example, when converting 100 W to the value in conventional unit PS, first change it to 0.1 kW and divide by the conversion rate 0.735499.

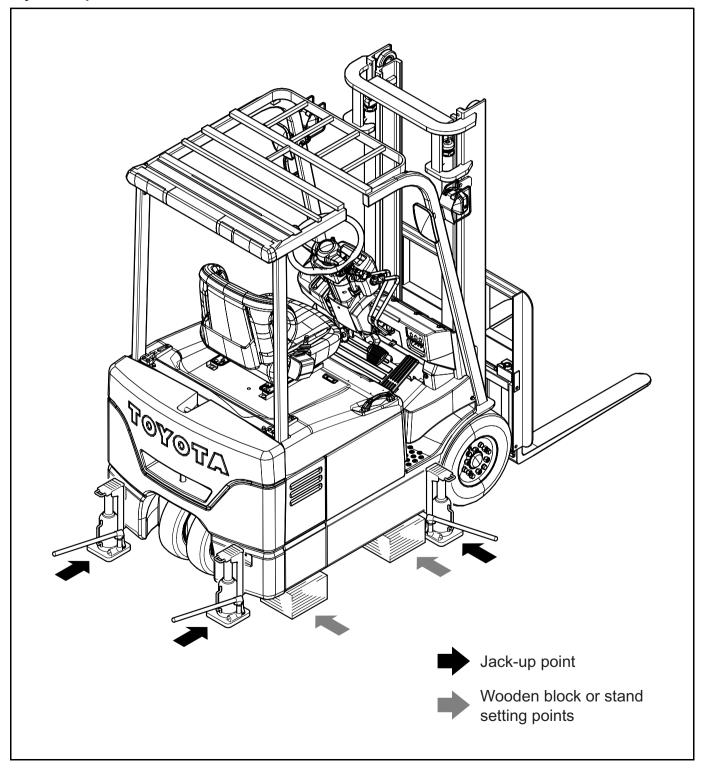
OPERATING TIPS

GENERAL INSTRUCTIONS

- 1. Skillful operation
 - (1) Prepare the tools, necessary measuring instruments (circuit tester, megohmmeter, oil pressure gauge, etc.) and SSTs before starting operation.
 - (2) Check the cable color and wiring state before disconnecting any wiring.
 - (3) When overhauling functional parts, complicated sections or related mechanisms, arrange the parts neatly to prevent confusion.
 - (4) When disassembling and inspecting a precision part such as the control valve, use clean tools and operate in a clean location.
 - (5) Follow the specified procedures for disassembly, inspection and reassembly.
 - (6) Always replace gaskets, packing, O-rings, self-locking nuts and cotter pins with new ones each time they are disassembled.
 - (7) Use genuine Toyota parts for replacement.
 - (8) Use specified bolts and nuts and observe the specified tightening torque when reassembling. (Tighten to the medium value of the specified tightening torque range.) If no tightening torque is specified, use the value given in the "standard tightening torque table".
- 2. Protection of functional parts (battery operated vehicles)
 - (1) Before connecting the battery plug after vehicle inspection or maintenance, thoroughly check each connector for any connection failure or imperfect connection.
 Failure or imperfect connection of connectors related to controllers, especially, may damage elements inside the controllers.
- 3. Defect status check

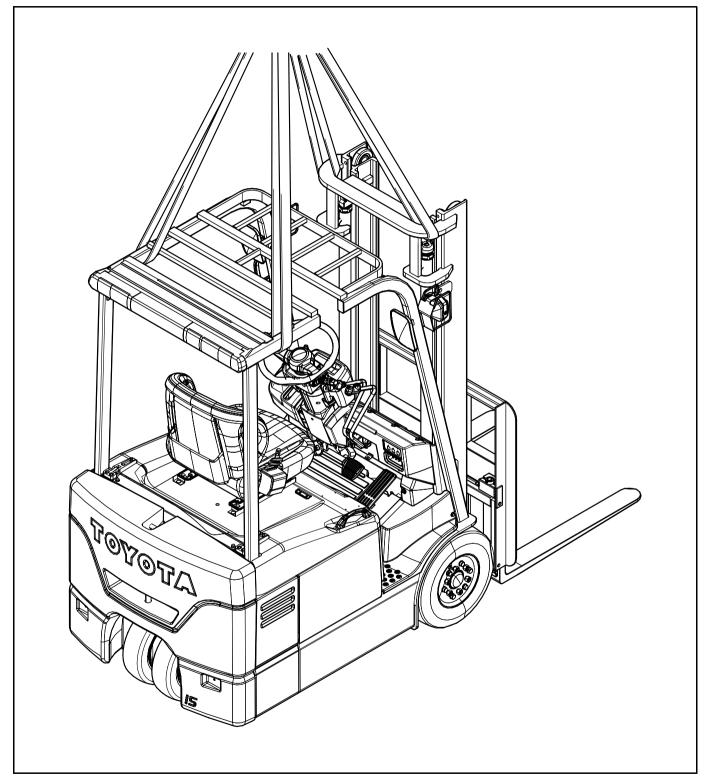
Do not start disassembly and/or replacement immediately, but first check that disassembly and/or replacement is necessary for the defect.

4. Waste fluid disposal


Always use a proper container when draining waste fluid from the vehicle.

Careless discharge of oil, fuel, coolant, oil filter, battery or other harmful substance may adversely affect human health and the environment. Always collect and sort well, and ask specialized companies for appropriate disposal.

JACK-UP POINT


Always observe the following instructions when jacking up the vehicle:

- When the fork is loaded, unload it and park the vehicle on a flat surface. Be sure to avoid an inclined or rough surface.
- Use a jack with ample capacity and jack up the vehicle at the specified jack-up point. Jacking up at any other point is dangerous.
- Always support the load of jacked-up vehicle with wooden blocks at specified points. Supporting the vehicle with the jack only is very dangerous.
- Never, under any circumstances, put any part of the body (including hands and feet) under the jacked-up vehicle.

HOISTING THE VEHICLE

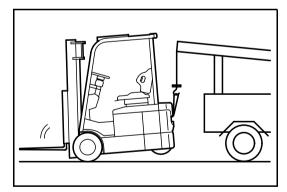
When hoisting the vehicle, always observe the specified hoist attachment section and method. Never hoist by any other attachment section as it is very dangerous.

WIRE ROPE SUSPENSION ANGLE LIST

Suspension Angle	Tension	Compression	Suspension method	Suspension Angle	Tension	Compression	Suspension method
0 °	1.00 time	0 time	₽ 2t	90°	1.41 time	1.00 time	SUL 2t
30°	1.04 time	0.27 time	30° 4160'L 2t	120°	2.00 time	1.73 time	120° № 2t
60°	1.16 time	0.58 time	40° 1° 1° 1°				

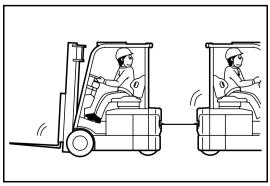
SAFE LOAD FOR EACH WIRE ROPE SUSPENSION ANGLE

Unit: N (tf) [lbf]

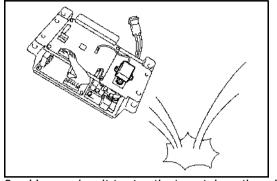

Rope diameter	Cutting load	Single- rope	Two-rope suspension			fc	our-rope s	suspensio	<u>(,, [,,,]</u>)U	
diameter	1000	0°	0°	30°	60°	90°	0°	30°	60°	90°
6 mm (0.24 in)	21380 (2.18) [4807]	3040 (0.31) [683.6]	6080 (0.62) [1367]	5880 (0.6) [1323]	5200 (0.53) [1169]	4310 (0.44) [970]	12160 (1.24) [2734]	11770 (1.2) [2646]	10400 (1.06) 2337	8630 (0.88) [1940]
8 mm (0.32 in)	31480 (3.21) [7078]	4410 (0.45) [992.3]	8830 (0.9) [1985]	8530 (0.87) [1918]	7650 (0.78) [1720]	6280 (0.64) [1411]	17650 (1.8) [3969]	17060 (1.74) [3937]	15300 (1.56) [3440]	12550 (1.28) [2322]
10 mm (0.4 in)	49230 (5.02) [11690]	6960 (0.71) [1565.6]	14020 (1.43) [3153]	13440 (1.37) [3021]	11770 (1.2) [2646]	9810 (1.0) [2205]	27460 (2.8) [6174]	26480 (2.7) [5954]	23540 (2.4) [5292]	19610 (2.0) [4410]
12.5 mm (0.5 in)	76880 (7.84) [17387]	10980 (1.12) [2469.5]	21570 (2.2) [4851]	21280 (2.1) [4631]	18630 (1.9) [4190]	14710 (1.5) [3308]	43150 (4.4) [9702]	41190 (4.2) [9261]	37270 (3.8) [8379]	29420 (3.0) [6615]
14 mm (0.56 in)	96400 (9.83) [21675]	13730 (1.4) [3087]	27460 (2.8) [6174]	26480 (2.7) [5954]	23540 (2.4) [5292]	18630 (1.9) [4190]	54920 (5.6) [12348]	52960 (5.4) [11907]	47070 (4.8) [10584]	37270 (3.8) [8379]

MEMBER WEIGHTS

Unit:	ka ((lbs)
••••••		(


		UTIIL KY (IDS)	
Member	Vehicle model	Weight	
BATTERY ASSY	See P1-2		
Drive motor ASSY	All Models	Approx. 37 (82)	
Pump motor ASSY	All Models	Approx. 31 (68)	
Front axle ASSY W/ drive motor ASSY	All Models	Approx. 122 (269)	
Rear axle ASSY W/ rear axle cylinder ASSY	All Models	Approx. 45 (99)	
	7FBE10	Approx. 405 (893)	
	7FBE13	Approx. 598 (1319)	
Counterweight	7FBE15	Approx. 697 (1537)	
	7FBE18	Approx. 853 (1881)	
	7FBE20	Approx. 1040 (2293)	
Mast ASSY W/ lift bracket (W/ lift cylinder, L/ fork,	7FBE10 to 7FBE18	330 (730)	
Lifting height 3000mm, V mast)	7FBE20	400 (880)	
	7FBE10	2225 (4906)	
	7FBE13	2425 (5347)	
Vehicle weight	7FBE15	2685 (5920)	
	7FBE18	2840 (6262)	
	7FBE20	3155 (6957)	

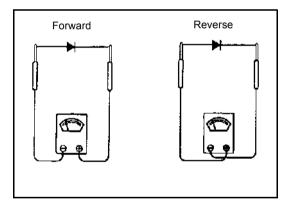
TOWING THE VEHICLE


Note the cautions below when towing the vehicle.

- 1. Lift the rear wheels for towing
- 2. The traveling speed when towing must not exceed the maximum traveling speed of the forklift.
- 3. Before starting towing, always set the key switch to OFF and the direction switch to the neutral position.
- 4. Before towing, either remove the fork or take action to prevent the fork from coming into contact with the ground due to bouncing.

ELECTRICAL PARTS INSPECTION

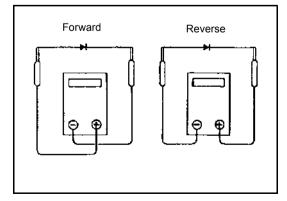
- 1. Always disconnect the battery plug before inspecting or servicing electrical parts.
- 2. Pay sufficient attention when handling electronic parts.



- (1) Never subject electronic parts, such as computers and relays, to impact.
- (2) Never expose electronic parts to high temperature or moisture.
- (3) Do not touch connector terminals, as they may be deformed or damaged due to static electricity.

 Use a circuit tester that matches the object and purpose of measurement. Analog type: This type is convenient for observing movement during operation and the operating condition. Measured value is only a reference

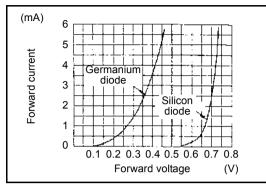
Digital type: A fairly accurate reading is possible. However, it is difficult to observe operation or movement.


- (1) Difference between results of measurement with analog and digital types
 * The results of measurements using the analog type and the digital type may be different.
 Differences between the polarities of the analog type and the digital type are described below.
 - 1) Analog circuit tester

Example of measurement result Tester range: $k\Omega$ range

	Analog type
Forward	Continuity
	11 kΩ
Reverse	No continuity
TCVC13C	∞

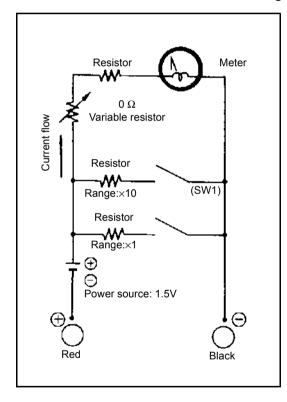
2) Digital circuit tester


Example of measurement result Tester range: 2 $M\Omega$ range

	Digital type
Forward	No continuity
rorward	1
Reverse	Continuity
Reverse	2 ΜΩ

(2) Difference in result of measurement with a circuit tester

The circuit tester power supply voltage depends on the tester type. 1.5 V, 3.0 V or 6.0 V is used. The resistance of a semiconductor, such as a diode, varies with the circuit tester power supply voltage.


The diode characteristics are shown in the figure below.

The resistance values of the same semiconductor measured with two types of circuit testers having different power supply voltages are different.

This manual describes the results of measurement with a circuit tester whose power supply voltage is 3.0 V.

(3) Difference in measurement result by measurement range (analog type) In the analog type circuit tester, changing the measurement range switches over the internal circuit to vary the circuit resistance. Even when the same diode is measured, the measurement result varies with the measurement range.

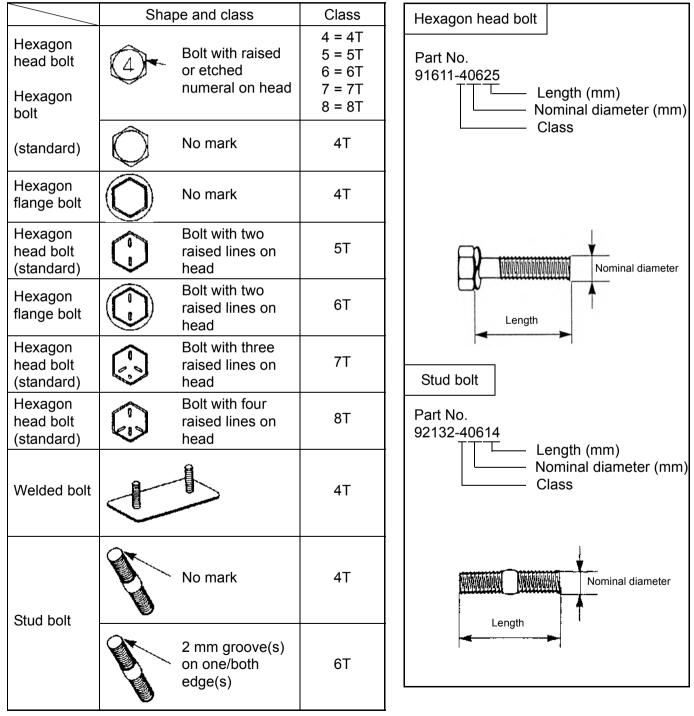
Always use the range described in the repair manual for measurement.

NOTES ON SAS

- 1. For the explanations of SAS functions and operation, also see "New Model Feature 7FBE10 to 20 Pub. No.PE314".
- 2. See page 17-6 FOR REPAIR WORK of this repair manual before servicing.
- 3. If repair or replacement is performed in any section of the vehicle that relates to SAS function, perform necessary matching to ensure proper SAS function (see page 4-47).
- 4. always be sure to operate the vehicle carefully. Be aware of the difference in control features between with and without SAS.
- 5. Many precision valves are used in the SAS oil control valves. When disassembling or replacing hydraulic parts (valves, piping, etc.), be sure to clean the parts before installation. Periodic change of the hydraulic oil is also very important.
- 6. As the vehicle is equipped with high-precision electronic devices, modification of electrical parts may cause vehicle failure. Be sure to use genuine Toyota parts for replacement and installation of the electrical parts (auxiliary equipment, optional parts, etc.).

STANDARD BOLT & NUT TIGHTENING TORQUE

Tightening torque of standard bolts and nuts are not indicated throughout the manual.


Use the charts and table below to judge the standard tightening torque.

- 1. Find the class of the bolt strength on the table below and then find the bolt tightening torque on the tightening torque table.
- 2. The nut tightening torque can be judged from its corresponding bolt type.

BOLT STRENGTH CLASS IDENTIFICATION METHOD

Identification by bolt shape

Identification by part No.

TIGHTENING TORQUE TABLE

				S	tandard tigh	tening torqu	le	
Class	Nominal diameter mm	Pitch mm	Hexagon head bolt		Hexagon flange bo	B		
			N∙m	kgf∙cm	ft·lbf	N∙m	kgf∙cm	ft·lbf
4T	6	1.0	5.4	55	48in·lbf	5.9	60	52in·lbf
	8	1.25	13	130	9	14	145	10
	10	1.25	25	260	19	28	290	21
	12	1.25	47	480	35	53	540	39
	14	1.5	75	760	55	83	850	61
	16	1.5	113	1150	83	—	—	—
5T	6	1.0	6.4	65	56in·lbf	7.5	75	65in·lbf
	8	1.25	16	160	12	18	175	13
	10	1.25	32	330	24	36	360	26
	12	1.25	59	600	43	65	670	48
	14	1.5	91	930	67	100	1050	76
	16	1.5	137	1400	101	157	1600	116
6Т	6	1.0	7.8	80	69in·lbf	8.8	90	78in·lbf
	8	1.25	19	195	14	21	215	16
	10	1.25	38	400	29	43	440	32
	12	1.25	72	730	53	79	810	59
	14	1.5	110	1100	80	123	1250	90
	16	1.5	170	1750	127	191	1950	141
7T	6	1.0	11	110	8	12	120	9
	8	1.25	25	260	19	28	290	21
	10	1.25	52	530	38	58	590	43
	12	1.25	95	970	70	103	1050	76
	14	1.5	147	1500	108	167	1700	123
	16	1.5	226	2300	166	—	—	—
8T	6	1.0	12	125	9	14	145	9
	8	1.25	29	300	22	32	330	24
	10	1.25	61	620	45	68	690	50
	12	1.25	108	1100	80	123	1250	90
	14	1.5	172	1750	127	196	2000	145
	16	1.5	265	2700	195	299	3050	221

PRECOATED BOLTS

- 1. Do not replace or restore a precoated bolt as it is in the following cases:
 - (1) After it has been removed.
 - (2) When it has been moved by tightness check, etc. (loosened or tightened)

NOTE:

For torque check, tighten the bolt at the lower limit of the allowable tightening torque range; if the bolt moves, retighten it according to the steps below.

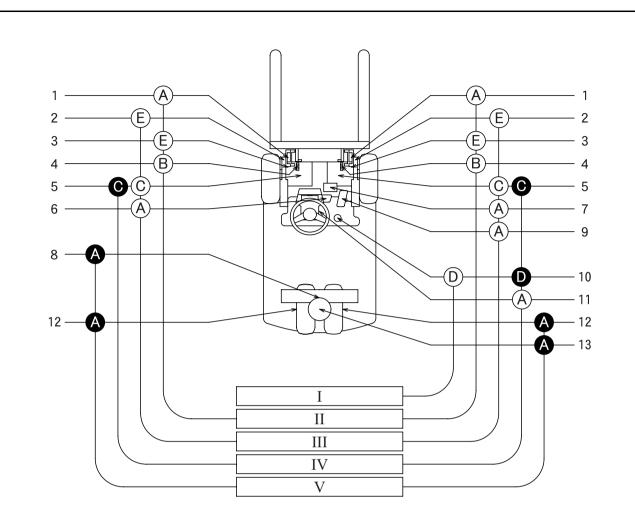
- 2. How to reuse precoated bolts
 - (1) Wash the bolt and threaded hole.(The threaded hole must be washed even when replacing the bolt with a new one)
 - (2) Completely dry the washed parts by blowing with air.
 - (3) Apply a specified seal lock agent to the threaded portion of the bolt.

HIGH PRESSURE HOSE FITTING TIGHTENING TORQUE

- 1. When connecting a high pressure hose, wipe the hose fitting and corresponding nipple contact surfaces with a clean cloth to remove foreign matter and dirt. Also check that there are no dents or other damage on the contact surfaces before installation.
- 2. When connecting the high pressure hose, hold the hose to align the fitting with the nipple and tighten the fitting.
- 3. The maximum tightening torque must not exceed twice the standard tightening torque.

Nominal diameter	Tightening to	rque standard N⋅m (kgf⋅cm) [ft⋅lbf]	Inside diameter of hose
of screw	Standard	Tightening range	mm (in)
7/16-20UNF	25 (50) [18.1]	24 to 26 (240 to 270) [17.4 to 19.5]	6 (0.24)
9/16-18UNF	49 (500) [36.2]	47 to 52 (480 to 530) [34.7 to 38.3]	9 (0.35)
3/4-16UNF	59 (600) [43.4]	56 to 62 (570 to 630) [41.2 to 45.6]	12 (0.47)
7/8-14UNF	59 (600) [43.4]	56 to 62 (570 to 630) [41.2 to 45.6]	12 (0.47)
7/8-14UNF	78 (800) [57.9]	74 to 82 (740 to 840) [53.5 to 60.8]	15 (0.59)
1•1/16-12UNF	118 (1200) [86.8]	112 to 123 (1140 to 1250) [82.5 to 90.4]	19 (0.75)
1•5/16-12UNF	137 (1400) [101.3]	130 to 144 (1330 to 1470) [96.2 to 106.4]	25 (0.98)
PF1/4	25 (250) [18.1]	24 to 26 (240 to 270) [17.4 to 19.5]	6 (0.24)
PF3/8	49 (500) [36.2]	47 to 52 (480 to 530) [34.7 to 38.3]	9 (0.35)
PF1/2	59 (600) [43.4]	56 to 62 (570 to 630) [41.2 to 45.6]	12 (0.47)
PF3/4	118 (1200) [86.8]	112 to 123 (1140 to 1250) [82.5 to 90.4]	19 (0.75)
PF1	137 (1400) [101.3]	130 to 144 (1330 to 1470) [96.2 to 106.4]	25 (0.98)

RECOMMENDED LUBRICANT QUANTITY AND TYPES


Application	Туре	Capacity
Drive unit	Castle hypoid gear oil W (API GL-4, SAE 75W-80)	Approx. 0.4 ℓ (0.11 US gal) (Until purring out from the filler port)
Hydraulic oil	STD: Castle hydraulic oil (ISO VG32) Cold storage vehicle: Mobil Aero HFE	See "Hydraulic oil level by lifting height" below
Chassis parts	MP grease Chassis grease special Esso beacon 325	Appropriate amount
Battery	Distilled water	Appropriate amount

Hydraulic oil level by lifting height

Unit:ℓ (US gal)

Lift	ing height	V mast	SV mast	FV Mast	FSV Mast		
To 3000mm	Capacity	14 (3.70)	14 (3.70)	17 (4.49)			
(118 in)	Hydraulic oil level in the tank 12.4 (3.27)						
To 4000mm	Capacity	15 (3.96)	15 (3.96)	19 (5.01)	16 (4.22)		
(157.5 in)	Hydraulic oil level in the tank	14.2 (3.75)					
To 6000mm	Capacity	18 (4.75)			19 (5.01)		
(236 in)	Hydraulic oil level in the tank	17.2 (4.54)					

LUBRICATION CHART

- O: Inspection and addition
- •: Replacement
- A: MP grease
- B: Motor oil
- C: Gear oil (SAE 75W-80)
- D: Hydraulic oil (ISO VG32)
- E: Chassis grease special
- 1. Mast strip
- 2. Tilt cylinder front pin
- 3. Mast support bushing
- 4. Lift chain
- 5. Drive unit
- 6. Brake link
- 7. Oil control valve lever pin

- I. Inspection every 8 hours (daily)
- II. Inspection every 40 hours (weekly)
- III. Inspection every 170 hours (monthly)
- IV. Inspection every 1000 hours (6 monthly)
- V. Inspection 2000 hours (annual)
- 8. Steering rack and pinion gear
- 9. Accelerator link
- 10. Oil tank
- 11. Tilt steering lock device
- 12. Rear wheel bearing
- 13. Rear axle bearing

PERIODIC MAINTENANCE

INSPECTION METHOD

- I: Inspection · Repair or Replacement if required
 M: Measurement · Repair or Adjustment if required
 T: Retightening C: Cleaning L: Lubrication
 *: For new vehicle *1: Flaw detector

	Inspection timing	Every month	Every 3 months	Every 6 months	Every 12 months
Item		Every 170 hours	Every 500 hours	Every 1000 hours	Every 2000 hours
ELECTRICAL S		I			
	Rotation sound abnormality	I	\leftarrow	\leftarrow	\leftarrow
Motor	Looseness in the connecting parts	Т	\leftarrow	\leftarrow	\leftarrow
	Insulation resistance		М	\leftarrow	\leftarrow
	Charging level (Display)	I	\leftarrow	\leftarrow	\leftarrow
	Electrolyte level	I	\leftarrow	\leftarrow	\leftarrow
	Electrolyte specific gravity	М	\leftarrow	\leftarrow	\leftarrow
Patton	Looseness in the connecting parts	I	\leftarrow	\leftarrow	\leftarrow
Battery	Abnormality in the upper portion of the battery and/or the case	I	\leftarrow	\leftarrow	\leftarrow
	Insulation resistance		М	\leftarrow	\leftarrow
	Voltage measurement of each battery cell after charging				М
	Timer function (Timer test)	I	\leftarrow	\leftarrow	\leftarrow
	Looseness in the connecting parts	Т	\leftarrow	\leftarrow	\leftarrow
Charger	HVR function voltage measurement				М
	Operating condition of the magnetic switch, contact contamination, roughness				I
	Contact looseness, damage, abrasion	I	\leftarrow	\leftarrow	\leftarrow
	Operating condition, contamination and abrasion of the auxiliary contact	I	\leftarrow	\leftarrow	~
Magnet switch	Mounting condition of the arc shooter				I
Ū.	Operating condition and timing				I
	Looseness of the coil installation locations				I
	Mounting condition and looseness of the main circuit lead wire				I
Ndiana av 11 l	Operating condition and timing	I	\leftarrow	\leftarrow	\leftarrow
Micro switch	Damage and looseness of installation locations	I	\leftarrow	\leftarrow	\leftarrow
Direction lever	Operating condition, damage	I	\leftarrow	\leftarrow	\leftarrow

	Inspection timing	Every month	Every 3 months	Every 6 months	Every 12 months
Item		Every 170 hours	Every 500 hours	Every 1000 hours	Every 2000 hours
	Operating condition	I	\leftarrow	\leftarrow	\leftarrow
Controller	Interior contamination, damage	С	\leftarrow	\leftarrow	\leftarrow
	Motor input voltage				М
Fuses	Looseness of the installation locations	I	\downarrow	\leftarrow	\leftarrow
Wiring	Harness deterioration, damage and looseness of the clamp	I	\leftarrow	~	\leftarrow
(incl. charging cable)	Looseness of the connections, taping condition	I	\leftarrow	\leftarrow	\leftarrow
	Connecting condition and damage of the battery connector	Ι	\leftarrow	\leftarrow	\leftarrow
POWER TRANS	SMISSION SYSTEM				
	Oil leak	I	\leftarrow	\leftarrow	\leftarrow
Drive unit	Oil level	I	\leftarrow	\leftarrow	\leftarrow
	Bolt or nut looseness				Т
DRIVE SYSTEM	1				
Front axle	Damage and deformation				I
	Damage and deformation				I
Rear axle	Looseness of rear axle bearing				I
	Abnormal noise of rear axle bearing				I
	Tire pressure	М	\downarrow	\leftarrow	\leftarrow
	Tire crack, damage and abnormal wear	I	\leftarrow	\leftarrow	\leftarrow
	Tire tread depth	М	\leftarrow	\leftarrow	\leftarrow
	Metal piece, stone and other foreign matter on tire	I	\leftarrow	\leftarrow	\leftarrow
Wheels	Loosening of wheel nut and bolt	Т	\leftarrow	\leftarrow	\leftarrow
	Rim, side ring and disc wheel damage	I	\leftarrow	\leftarrow	\leftarrow
	Looseness and abnormal noise of front wheel bearing	I	\leftarrow	\leftarrow	\leftarrow
	Looseness and abnormal noise of rear wheel bearing	Ι	\leftarrow	\leftarrow	\leftarrow
STEERING SYS	STEM				
Steering wheel	Play, loosening, looseness	I	\leftarrow	\leftarrow	\leftarrow
	Function	I	\leftarrow	\leftarrow	\leftarrow
Steering valve	Oil leak	I	\leftarrow	\leftarrow	\leftarrow
Steering valve	Looseness of the installation locations	Т	\leftarrow	\leftarrow	\leftarrow
Wheels for steering	Turning angle to left and right				Ι

0-22

	Inspection timing	Every month	Every 3 months	Every 6 months	Every 12 months
Item		Every 170 hours	Every 500 hours	Every 1000 hours	Every 2000 hours
	Oil leak	I	\leftarrow	\leftarrow	\leftarrow
Power steering	Looseness of the installation locations	I	\leftarrow	\leftarrow	\leftarrow
	Damage of power steering hose				I
BRAKING SYST	EM				1
Draka nadal	Reserve	М	\leftarrow	\leftarrow	\leftarrow
Brake pedal	Braking performance	I	\leftarrow	\leftarrow	\leftarrow
Darking broke	Operating force and pull margin	I	\leftarrow	\leftarrow	\leftarrow
Parking brake	Braking performance	I	\leftarrow	\leftarrow	\leftarrow
Ded and ashle	Looseness and damage	I	\leftarrow	\leftarrow	\leftarrow
Rod and cable	Operating condition	I	\leftarrow	\leftarrow	\leftarrow
	Clearance between disc and pad	М	\leftarrow	\leftarrow	\leftarrow
	Wear of sliding portion and pad				I
Dia a braka	Disc wear and damage				I
Disc brake	Looseness of the disc installation locations				I
	Operating condition				I
	Return spring fatigue				I
MATERIAL HAN	IDLING SYSTEM	I	I	I	1
	Damage or wear of fork or stopper pin	I	\leftarrow	\leftarrow	\leftarrow
Fork	Fork deformation and wear	I	\leftarrow	\leftarrow	\leftarrow
	Cracks at fork root and welded part of tooth				I *1
	Deformation and damage of each part and crack at welded part	I	\leftarrow	\leftarrow	\leftarrow
	Wear and damage of roller	I	\leftarrow	\leftarrow	\leftarrow
Mast and	Mast and lift bracket looseness	I	\leftarrow	\leftarrow	\leftarrow
lift bracket	Wear and damage of mast support bushing				I
	Wear and damage of roller pin				I
	Wear and damage of mast strip	I	\leftarrow	\leftarrow	\leftarrow
	Chain lubrication	I	\leftarrow	\leftarrow	\leftarrow
Chain and	Deformation, damage and slackness of chain	I	\leftarrow	\leftarrow	\leftarrow
chain wheel	Abnormality of chain anchor bolt	I	\leftarrow	\leftarrow	\leftarrow
	Wear, damage and revolution of chain wheel		\leftarrow	\leftarrow	<i>←</i>
Various attachments	Abnormality and installation condition of each part	I	\leftarrow	\leftarrow	\leftarrow

	Inspection timing	Every month	Every 3 months	Every 6 months	Every 12 months
Item		Every	Every	Every	Every
HYDRAULIC SY	/STEM	170 hours	500 hours	1000 hours	2000 hours
	Looseness, deformation and damage of rod	I	\leftarrow	\leftarrow	\leftarrow
	and rod end Cylinder operation		←	←	\leftarrow
	Natural drop and natural forward tilt	M	`~	` ←	` ←
	Oil leak and damage	1	`←	`~	` ←
Cylinder	Wear and damage of pin and cylinder bearing	I		× ←	
	Loosening and damage of cylinder mounting	т	\leftarrow	\leftarrow	\leftarrow
	Lifting speed	М	\leftarrow	\leftarrow	\leftarrow
	Uneven movement	I	\leftarrow	\leftarrow	\leftarrow
Oil pump	Oil leak and abnormal sound	I	\leftarrow	\leftarrow	\leftarrow
	Oil level and contamination	I	\leftarrow	\leftarrow	\leftarrow
Hydraulic oil tank	Oil leak	I	\leftarrow	\leftarrow	\leftarrow
	Tank and oil strainer cleaning			С	\leftarrow
Hydraulic oil filter	Filter clogging				С
Control lever	Loose linkage	I	\leftarrow	\leftarrow	\leftarrow
Control level	Operation	I	\leftarrow	\leftarrow	\leftarrow
	Oil leak	I	\leftarrow	\leftarrow	\leftarrow
Oil control valve	Safety valve function	I	\leftarrow	\leftarrow	\leftarrow
	Relief pressure measurement				М
Hydraulic hose	Oil leakage, deformation and damage	I	\leftarrow	\leftarrow	\leftarrow
and piping	Looseness	Т	\leftarrow	\leftarrow	\leftarrow
SAFETY DEVIC	ES, ETC.				
	Looseness of the installation locations	Т	\leftarrow	\leftarrow	\leftarrow
Head guard and backrest	Deformation, crack and damage	I	\leftarrow	\leftarrow	\leftarrow
	Crack at welded portion	I	\leftarrow	\leftarrow	\leftarrow
Lighting system	Function and installation condition	I	\leftarrow	\leftarrow	\leftarrow
Direction indicator	Function and installation condition	I	<i>←</i>	<i>~</i>	←
Horn	Function and installation condition	I	\leftarrow	\leftarrow	\leftarrow
Backup buzzer	Function and installation condition	I	\leftarrow	\leftarrow	\leftarrow
Rear view	Rear reflection status	Ι	\leftarrow	\leftarrow	\leftarrow
mirror	Dirt, damage	I	\leftarrow	\leftarrow	\leftarrow

0-23

0-24

	Inspection timing	Every month	Every 3 months	Every 6 months	Every 12 months
Item		Every 170 hours	Every 500 hours	Every 1000 hours	Every 2000 hours
Instruments	Operation	I	\leftarrow	\leftarrow	\leftarrow
	Loosening and damage of mounting	Ι	\leftarrow	\leftarrow	\leftarrow
Seat	Seatbelt damage and function	I	\leftarrow	\leftarrow	\leftarrow
	Deadman seat operation	I	\leftarrow	\leftarrow	\leftarrow
Body	Damage and cracks in frame, cross mem- bers, etc.				I
воау	Bolts and nuts looseness				Т
	Functions	I	\leftarrow	\leftarrow	\leftarrow
	Loosening and damage at sensor mounting portion	I	\leftarrow	\leftarrow	\leftarrow
SAS	Damage, deformation, oil leakage and loos- ened installation of functional parts	I	\leftarrow	\leftarrow	\leftarrow
	Loosening and damage of wire harnesses	I	\leftarrow	\leftarrow	\leftarrow
	Rusting and corrosion of load sensor				I
Others	Grease up	L	\leftarrow	\leftarrow	\leftarrow

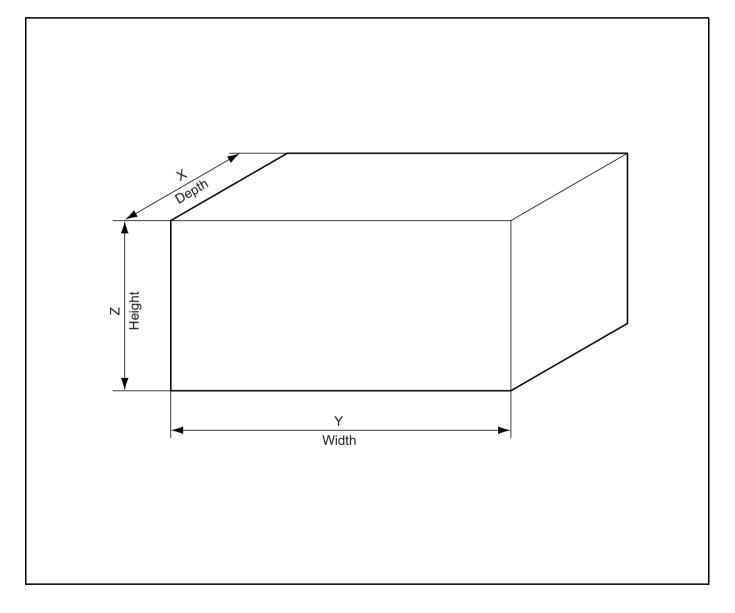
PERIODIC REPLACEMENT OF PARTS AND LUBRICANTS

•: Replacement

Replacement cycle	Every month	Every 3 months	Every 6 months	Every 12 months
Item	Every 170 hours	Every 500 hours	Every 1000 hours	Every 2000 hours
Drive unit gear oil			•	\leftarrow
Hydraulic oil			•	\leftarrow
Hydraulic oil filter	 New vehicle initial replacement 		•	~
Rear wheel bearing grease			•	\leftarrow
Power steering hose				●Every 2 years
Power steering rubber parts				●Every 2 years
Hydraulic hose				●Every 2 years
Lift chain				●Every 3 years

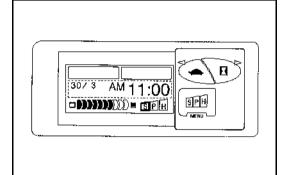
0-26

BATTERY


Page

BATTERY COMPARTMENT AND REQUIRED WEIGHT 1-2
SERVICE STANDARDS 1-3
DISPLAY 1-3
TROUBLESHOOTING 1-4
BATTERY ASSY 1-5
REMOVAL · INSTALLATION 1-5
INSPECTION 1-6
REPLACING BATTERY PLUG TERMINAL

BATTERY COMPARTMENT AND REQUIRED WEIGHT


When the battery is to be purchased locally, always adjust the weight to satisfy the minimum required weight as shown in the table below.

	Compa	artment dim	ension mm (in)		
	Depth X	Width Y	Height Z	kg (lb)	
7FBE10·13	451 (17.8)	998 (39.3)	613 (24.1)	520 (1147)	
7FBE15·18	551 (21.7)	↑	\uparrow	655 (1444)	
7FBE20	638 (25.1)	↑	↑	655 (1444)	

SERVICE STANDARDS

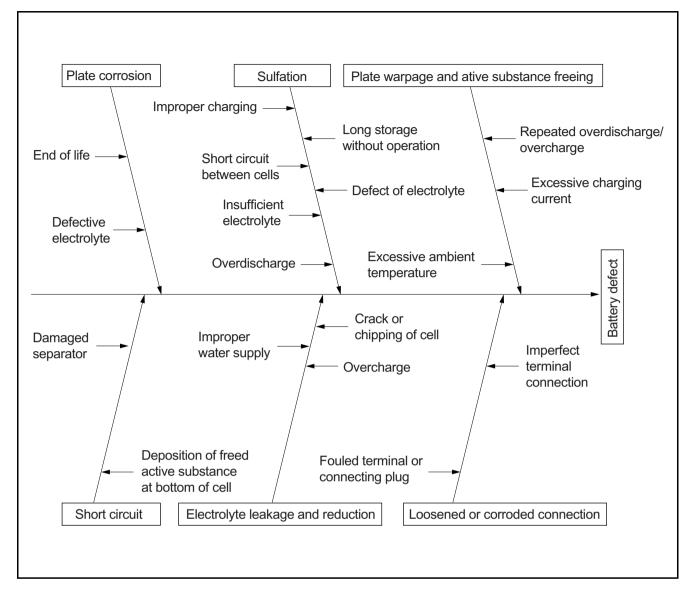
Specific gravity	1.280 [20°C (68°F)]
Specific gravity	1.150 [20°C (68°F)]
Discharge end voltage	42.5V
Electrolyte	Refined dilute sulfuric acid
Fluid to be added	Distilled water
Insulation resistance	$1M\Omega$ or more

Battery	LEDs									
discharged state %	10 F	9	8	7	6	5	4	3	2	1 E
0 to 10 (exclusive)	0	0	0	0	0	0	0	0	0	0
10 to 20 (exclusive)	_	0	0	0	0	0	0	0	0	0
20 to 30 (exclusive)	_	_	0	0	0	0	0	0	0	0
30 to 40 (exclusive)	_	_	_	0	0	0	0	0	0	0
40 to 50 (exclusive)	_				0	0	0	0	0	0
50 to 60 (exclusive)	_					0	0	0	0	0
60 to 70 (exclusive)	_						0	0	0	0
70 to 80 (exclusive)	_	_	_	_	_	_	_	0	0	0
80 to 90 (exclusive)	_	_	_	_	_	_	_	_	0	0
90 to 100 (exclusive)	_	_	_	_	_	_	_	_	_	0
100 or more	—	—	—	—	—	—	—	—	—	—

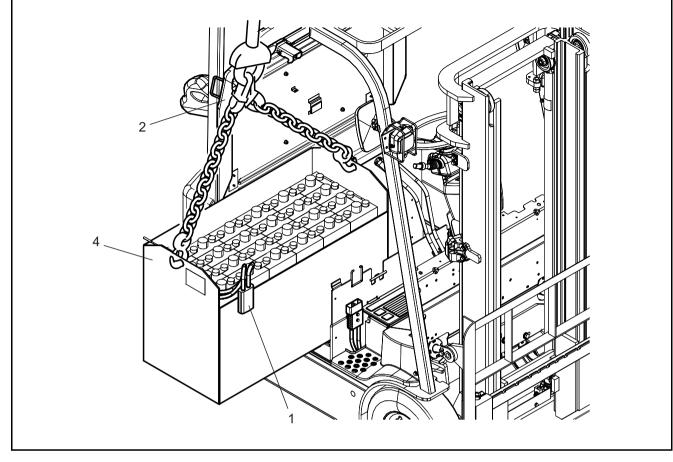
DISPLAY

Battery Charge Indicator

The battery charge indicator indicates 10 levels of battery charge on the LCD.


Low Remaining Battery Charge Warning

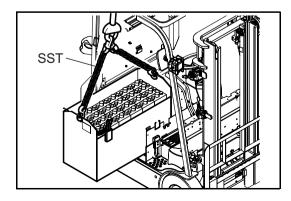
When the battery charge becomes below the set level, the battery charge indicator blinks and the alarm will sound for five seconds after the key switch is set to the ON position.


Battery Overdischarge Warning

When the battery charge decreases further below the set level after the remaining battery charge warning, any attempt at traveling or material handling operation will cause all charge indicator segments to blink and the alarm to sound to warn the operator.

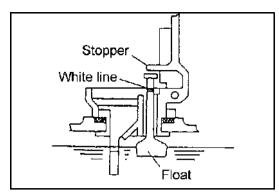
TROUBLESHOOTING

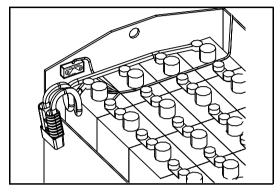
BATTERY ASSY REMOVAL · INSTALLATION



Removal Procedure

- 1 Disconnect the battery plug.
- 2 Open the seat stand.
- 3 Release the steering release lever.
- 4 Remove the battery ASSY.[Point 1]


Installation Procedure


The installation procedure is the reverse of the removal procedure.

Point Operations

[POINT 1] Removal · Installation: SST 25009-13201-71

INSPECTION

1. Electrolyte level inspection

Open the cap, and if the white line on the red float has dropped, water should be added.

Add water until the white line appears.

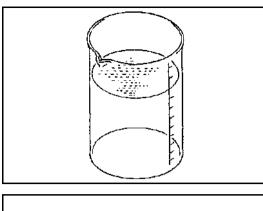
Stop water addition when the white line appears, since addition is excessive when the tip end of the float comes into contact with the stopper.

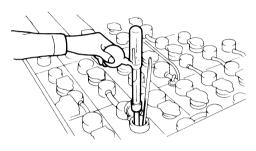
As a level gauge is provided at the front of the battery case, the electrolyte level can generally be checked at a glance, but open the cap to check the level when making a periodic inspection.

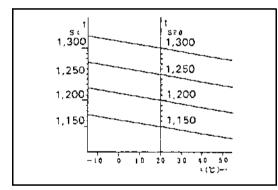
The green light of the level gauge lights up to indicate activation of the level gauge sensor, and the red light flashes to indicate the necessity of adding water.

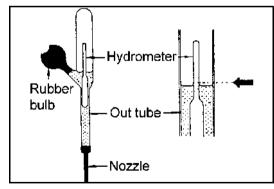
	Red light	Green light
Normal level	Off	On
Insufficient level	Blinking	On

Note:


Never change the installation location of the sensor.


Reference:


The consumption of electrolyte can be calculated by the following equation:


Consumption (cc) = 5 hour capacity \times 0.0336 \times number of cells \times number of charges

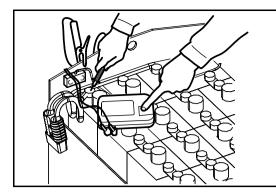
Vehicle model	Number of cells	Battery capacity (AH/5HR)
7FBE10	24	280
7FBE13	↑	\uparrow
7FBE15	↑	390
7FBE18	↑	\uparrow
7FBE20	\uparrow	\uparrow

2. Electrolyte inspection

Electrolyte inspection Battery electrolyte is normal when it is transparent. Check turbidity when inspecting the specific gravity. If it cannot be checked clearly, put the electrolyte in a beaker for inspection.

 Battery electrolyte specific gravity inspection Use a hydrometer to measure the specific gravity of the electrolyte.
 Specific gravity upon complete charging 1.280[20°C(68°F)]

Specific gravity upon end of discharge 1.150[20°C(68°F)]


The specific gravity of the electrolyte at 20°C (68° F) is used.68

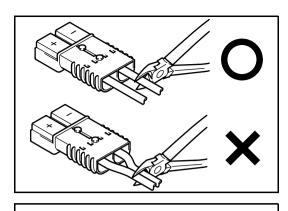
Equation for converting specific gravity S_{20} =St+0.0007 (t-20)

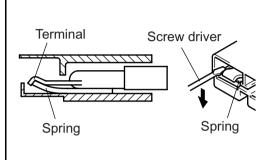
- S₂₀: Specific gravity at 20°C
- St: Specific gravity at t°C
- t: Electrolyte temperature upon measurement (°C)

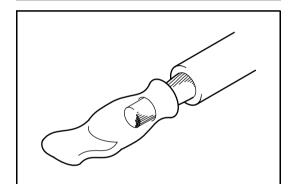
* How to use the hydrometer

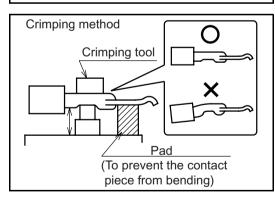
- (1) Insert the nozzle of the hydrometer into the electrolyte port and allow the electrolyte to be sucked into its outer tube.
- (2) Let the hydrometer float correctly without contact with the outer tube, top or bottom, and read the scale at the highest point of the electrolyte surface as illustrated at left when the bubbles in the electrolyte disappear.
- (3) After the measurement, wash the inside and outside of the hydrometer well with clear water and store it after wiping water off with clean cloth.

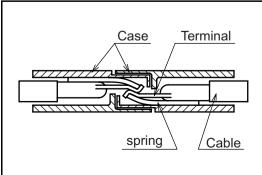
 Insulation resistance inspection Measure the resistance between the battery and battery case with an insulation resistance meter (megohmmeter).
 Insulation resistance 1 MΩ or more


Note:


When the insulation resistance is less than 1 M Ω , wash the battery with water after removing it from the vehicle. Fully dry the washed battery and measure the insulation resistance again. Install the battery on the vehicle after confirming that the insulation resistance is 1 M Ω or more.


* Battery control table


Prepare a control table for each battery to record and maintain the inspection results.


Inspection date and time	Inspected cell No.	Specific gravity	Electrolyte temperature	Added water quantity	Remarks	Inspector

REPLACING BATTERY PLUG TERMINAL

1. Disconnect battery plug cable one by one.

Caution:

Never disconnect more than one cable at the same time.Fatal accident may result by short circuit.

2. Insert a screwdriver from the terminal side, push down the spring at the bottom of the terminal and pull the cable to draw out the terminal.

3. Peel off the tip of the cable for Approx. 30mm, solder sufficiently and insert it to the contact portion of the new terminal.

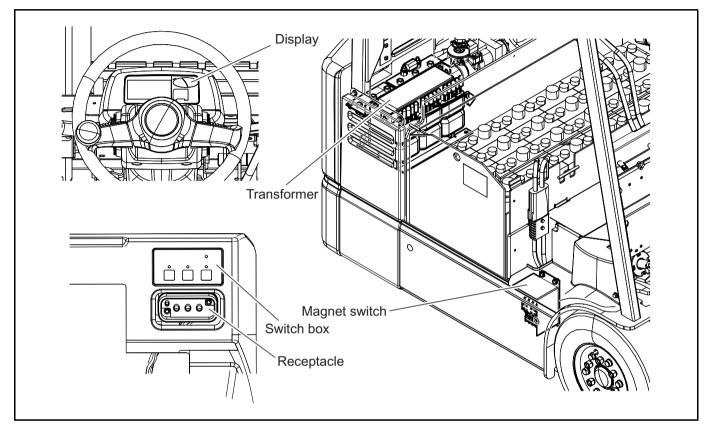
Note:

Be sure to prevent solder from pouring out and adhere to the contact surface of the terminal.

4. When crimping cables, never bend the terminal with a crimping tool.

5. Insert the terminal to the battery plug. Check that the tip of the terminal goes over the tip of the spring and securely set in the position.

CHARGER (OPT)


	Page
GENERAL	2-2
ON-VEHICLE CHARGER	2-2
APPLICABLE CHARGER LIST	2-2
SPECIFICATIONS	2-3
COMPONENTS	2-4
	2-5
TAP LAYOUT	2-5
BEFORE CHARGING	2-6
SWITCH BOX	2-7
MAGNETIC SWITCH ASSY	2-9
	2-11
TIMER TEST	2-15
	2-16
OFF-VEHICLE CHARGER	2-26
APPLICABLE CHARGER LIST	2-26
GS	2-27
YUASA	2-43

GENERAL

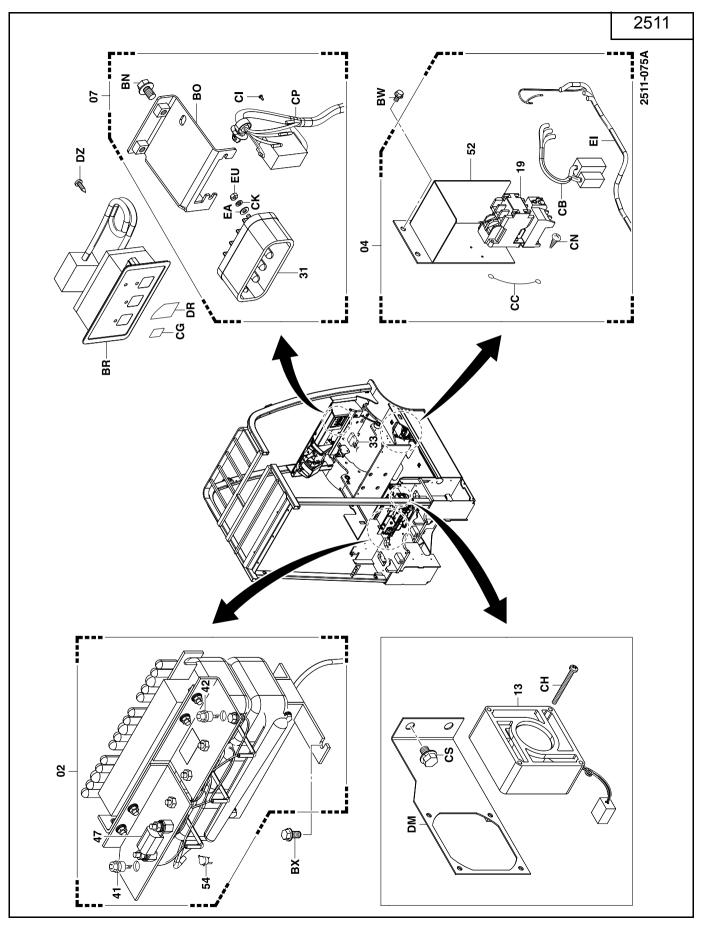
A fully automatic microcomputer-controlled on-vehicle charger (STD) and a fully automatic microcomputer-controlled off-vehicle charger (OPT) are provided. The on-vehicle charger is not provided on cold storage models.

This manual explains mainly the on-vehicle charger.

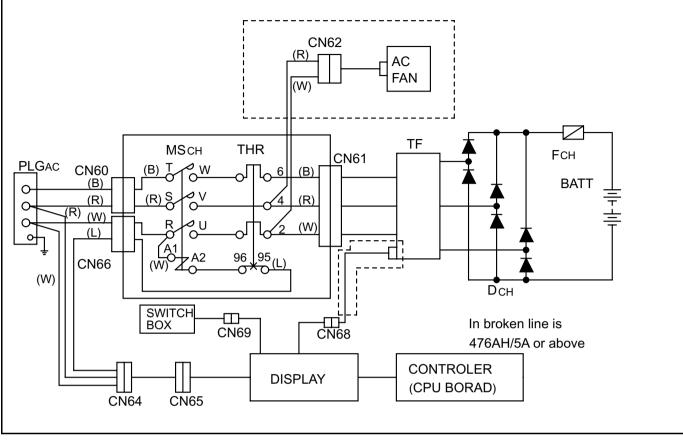
ON-VEHICLE CHARGER

APPLICABLE CHARGER LIST

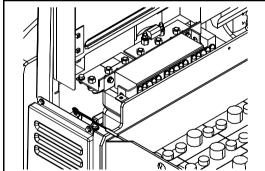
O:OPT Applicable vehicle model Power Transformer Power Battery Applicable supply 7 7 7 7 7 Transformer capacity voltage capacity F supply capacity F F F F model (kVA) voltage (V) (AH/5hr) (A) В В В В В (50/60 Hz) (50/60 Hz) Е Е Е Е Е 10 13 15 18 20 K47-227C048-405 200 4.0/3.9 48 280 to 312 15 0 0 K47-230C048-413 T 4.8/4.3 T 365 to 390 15 0 Ο Ο 0 0 30 K47-260C048-409 T 7.1/7.0 T 476 to 645 Ο 0 0

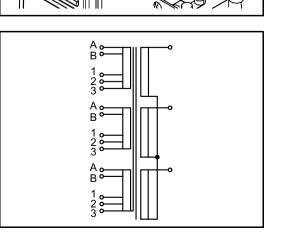

2-2

SPECIFICATIONS


Item		Transformer model	
	I	K47-227C048-405	K47-230C048-413
	Туре	CLK-20JT-F	\leftarrow
Magnetic switch (MSch)	Rating	20 A	\leftarrow
	Thermal setting	18 A	\leftarrow
Transformer (TF)	Capacity (50/60 Hz)	4.0/3.9 kVA	4.8/4.3 kVA
	Insulation	Н	\leftarrow
Diode (Dch)	Туре	SKR71/02 (+) SKN71/02 (-)	<i>←</i>
Fuse (Fch)	Capacity	96 V, 80 A	\leftarrow

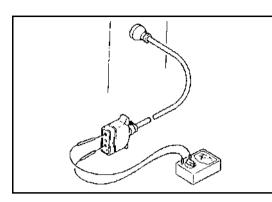
Item		Transformer model K47-260C048-409
	Туре	CLK-35JT-F
Magnetic switch (MSch)	Rating	35 A
	Thermal setting	30 A
Transformer (TF)	Capacity (50/60 Hz)	7.1/7.0 kVA
	Insulation	Н
Diode (Dch)	Туре	SKR100/04 (+) SKN100/04 (-)
Fuse (Fch)	Capacity	96 V, 100 A


COMPONENTS



WIRING DIAGRAM

TAP LAYOUT





Frequency	Tap position
50 Hz	A
60 Hz	В
Power supply voltage	Tap position
200 V	1
210 V	2
220 V	3

BEFORE CHARGING

If the ampere capacity at the charging location is insufficient because other electrical appliances are being used, ask an electrical work contractor to provide an exclusive circuit for the charger. See the "On-vehicle Charger List" (page 2-2) for the AC power supply capacity.

Tap Changer

1. Measure the power supply voltage to be used for charging.

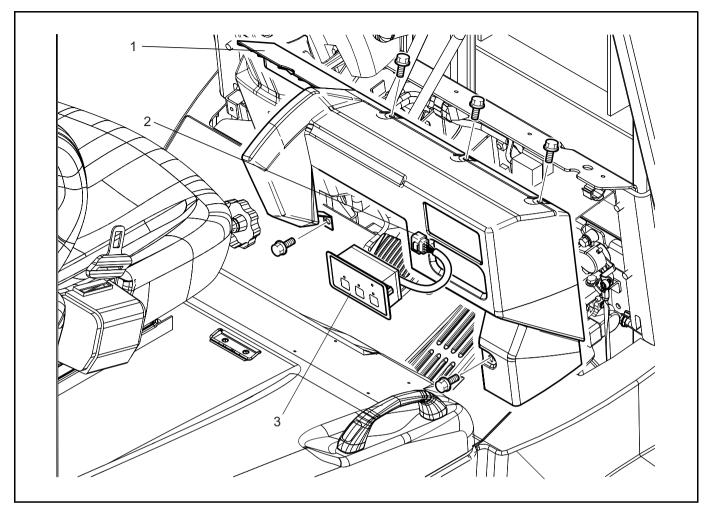
Tester range: AC (250 or 1000 V)

Note:

Measure the power supply voltage at night (or, if that is impossible, during a time when electrical appliances are not being operated).

- 2. Set the tap changer.
 - (1) Disconnect the battery plug.
 - (2) Open the battery hood
 - (3) Remove the controller panel cover.
 - (4) Remove the tap cover of each phase corresponding to the power supply voltage measured in step 1 above.
 - (5) Set the taps.
 - (6) Connect the battery plug.
 - (7) Connect the charger to the power supply outlet and press the NORMAL button.
 - (8) Measure the voltage between the set taps.

Тар	Measured voltage
200 V	199 V or less
210 V	200 to 209 V
220 V	210 to 219 V

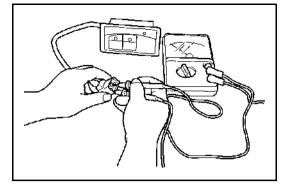

Caution:

After tap changer setting, if the error code "F6-2" is displayed during charging, change them to the upgraded ones.

Note:

- Taps are set to 220 V and 60 HZ at the time of shipment.
- Be sure to set the tap changer for voltage and frequency change of phase U, V and W.
- For about a week after tap changer setting, keep track of the battery charging state (specific gravity and electrolyte level) to make sure the tap setting is appropriate.

SWITCH BOX REMOVAL · INSTALLATION



Removal Procedure

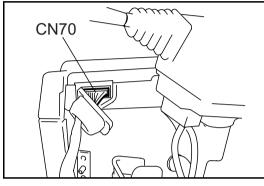
- Remove the right instrument panel. Disconnect the wiring connector. Remove the switch box ASSY. 1
- 2
- 3

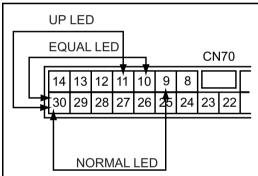
Installation Procedure

The installation procedure is the reverse of the removal procedure.

Point Operations

[POINT 1]

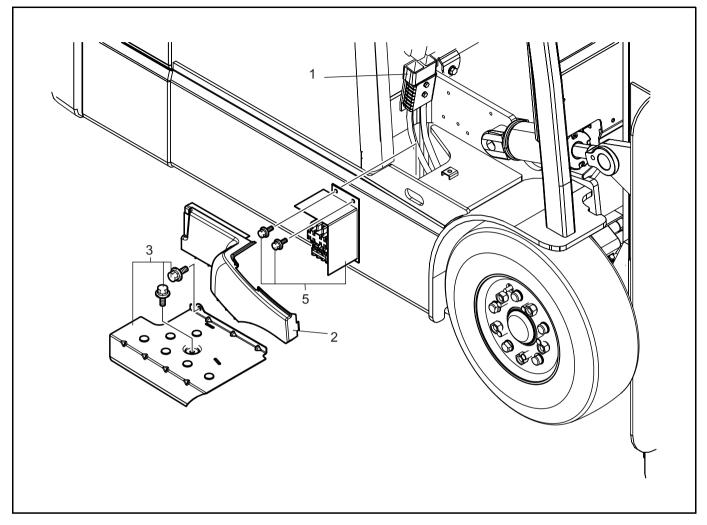

Inspection:


Inspect each switch in the ON and OFF positions. (CN69)

	Measurement terminals	ON	OFF	Tester range
NORMAL button	2–8	0Ω	8	Q × 1
EQUAL button	3–8	0Ω	8	22 ** 1

Inspection:

Inspect the applied voltage of the LED.Check the applied voltage of the LED at the display connector (CN70). (CN69 must be connected.)

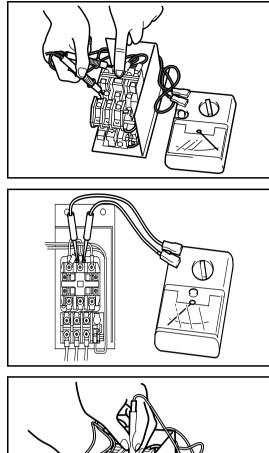


	CN70	Charging in progress (LED on)	Charging stopped (LED off)	Tester range
NORMAL LED	Between 9 and 30 (between Y–B and B–W)	2 V	0 V	10 VDC
EQUAL LED	Between 10 and 30 (between Y–G and B–W)	2 V	0 V	10 000

	CN70	Upon end of test mode (LED on)	Other state (LED off)	Tester range
UP LED	Between 11 and 30 (between Y–W and B–W)	2 V	0 V	10 VDC

MAGNETIC SWITCH ASSY REMOVAL · INSTALLATION

T=N·m(kgf·cm)[ft·lbf]



Removal Procedure

- 1 Disconnect the battery plug.
- 2 Remove the toe board (front, rear) and tilt cylinder cover.
- 3 Remove the step
- 4 Disconnect the wiring connector.
- 5 Remove the magnetic switch ASSY W/bracket.

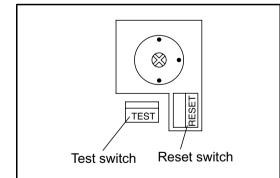
Installation Procedure

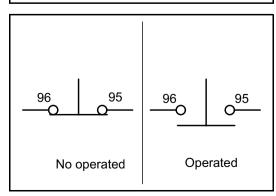
The installation procedure is the reverse of the removal procedure.

Point Operations

[POINT 1]

Inspection:


Magnetic switch contact continuity inspection.


Tester range		Ω × 1
Measurement terminals		T–W, S–V and R–U
Standard:	MSch ON	0 Ω
otandard.	MSch OFF	$\infty \Omega$

Inspection:

Magnetic switch coil continuity inspection.

Tester range		Ω×1
Measurement terminals		A1–A2
Standard:	CLK-20JT-F	700 Ω
Stanuaru.	CLK-35JT-F	400 Ω

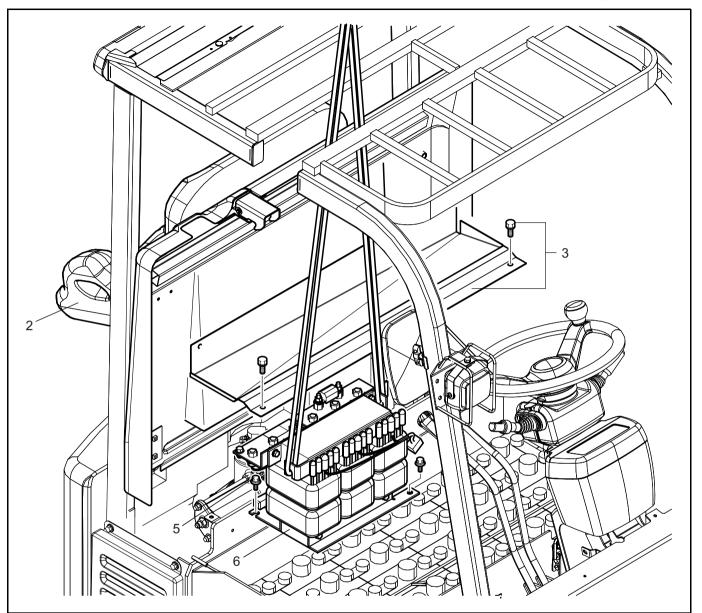
Inspection:

Thermal relay contact continuity inspection.Tester range $\Omega \times 1$ Measurement terminals95–96Standard:Not operating 0Ω Operating $\infty \Omega$

Inspection:

Inspect the reset switch.

Check that the thermal relay is deactivated upon pressing the reset switch while the thermal relay is activated.Do not adjust the thermal relay operating current.

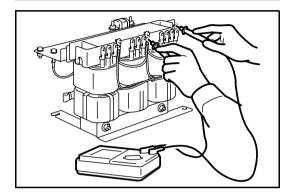

If charging stops due to thermal relay activation while the charger is in use, always check the thermal relay activating cause and reset after taking corrective action.

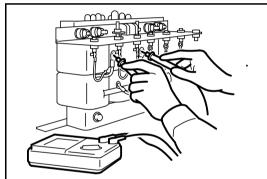
Press the reset switch lightly to reset the thermal relay.

* Test the thermal relay as follows: Press the reset switch.

TRANSFORMER ASSY REMOVAL · INSTALLATION

T=N·m(kgf·cm)[ft·lbf]




Removal Procedure

- 1 Disconnect the battery plug.
- 2 Open the battery hood.
- 3 Remove the control panel cover.
- 4 Disconnect wiring of the transformer ASSY.
- 5 Remove the transformer ASSY set bolts.
- 6 Remove the transformer ASSY by hoisting it.

Installation Procedure

The installation procedure is the reverse of the removal procedure.

Point Operations

[POINT 1]

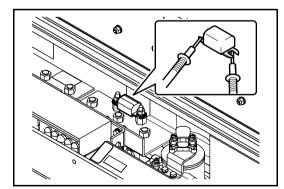
Inspection:

Measure the insulation resistance.

Measuring instrument	DC 500 V megohmmeter
Measurement terminals	Each coil terminal – frame
Standard:	1 M Ω or more

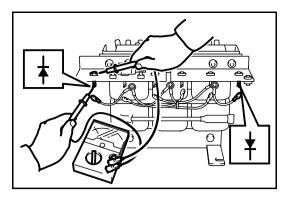
[POINT 2]

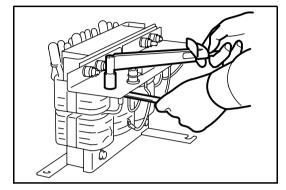
Inspection:


Measure the primary coil continuity.

Tester range	Ω × 1
Measurement terminals	$U_1 - V_1, V_1 - W_1, W_1 - U_1$
Standard:	0 Ω

Inspection:


Measure the secondary coil continuity.


Tester range	Ω × 1
Measurement terminals	$U_2 - V_2, V_2 - W_2, W_2 - U_2$
Standard:	0 Ω

Inspection: Inspect the fuse.

Standard: 0 Ω

Inspection:

Measure the diode continuity.

Inspect the diodes installed on the radiating fin plate and remove only if an abnormality is found.

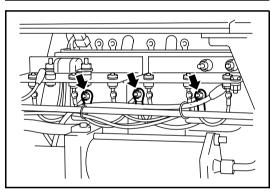
Tester range		Ω × 1K	
Measurement	Forward	Anode (-) – Cathode (+)	
terminals	Reverse	Anode (+) – Cathode (-)	
Standard:	Forward	Continuity	
	Reverse	$\Omega \propto \Omega$	

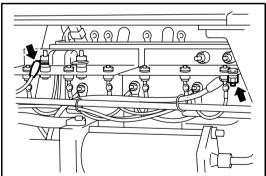
Reassembly:

As two diodes with different polarity are used, be sure to avoid incorrect installation.

Reassembly:

Install each diode by tightening to the specified torque. **SKR71/02, SKN71/02:**


4 N·m (41 kgf·cm) [3 ft·lbf] SKR100/04, SKN100/04: 10 N·m (102 kgf·cm) [7 ft·lbf]


Inspection after installation

1. Inspect each wiring connection.

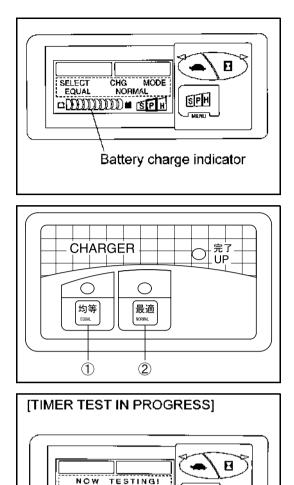
Note:

Check each wiring connection by referring to the charger wiring diagram.

2. Measure the insulation resistance.

Measuring instrument	DC 500 V megohmmeter	
Measurement terminals	Each coil terminal–frame	
Standard:	1 M Ω or more	

 Measure the no-load secondary voltages. Remove the counterweight (See P11-6) Connect the charger plug to a power supply outlet (with the transformer P1 and N1 cables disconnected), start charging (by pressing the NORMAL ON/OFF switch), and measure the following voltages. "F7" error is displayed when charging is started with either the P1 or the N1 cable of the transformer

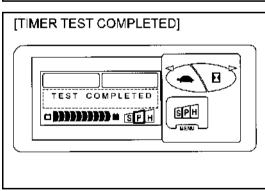

either the P1 or the N1 cable of the transformer disconnected for the purpose of measuring the no-load voltage of the transformer, but this is not abnormal.

AC voltage

Tester range	AC 250 V – AC 500 V
Measurement terminals	$U_2 - V_2, V_2 - W_2, W_2 - U_2$
Standard: 50/60(Hz)	K47-230C048-413: 53/54 V
Stanuaru. 50/00(112)	Other than the above: 54/56 V

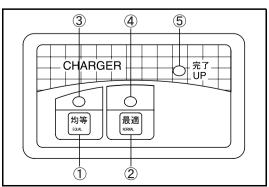
DC voltage

Tester range	250 VDC	
Measurement terminals	P1 and N1 terminals P1 terminal: (+) probe	
	N1 terminal: (-) probe	
Standard: 50/60(Hz)	K47-227C048-405: 72/75 V K47-230C048-413: 71/73 V	
Standard, 50/00(112)	K47-260C048-409: 71/74 V	

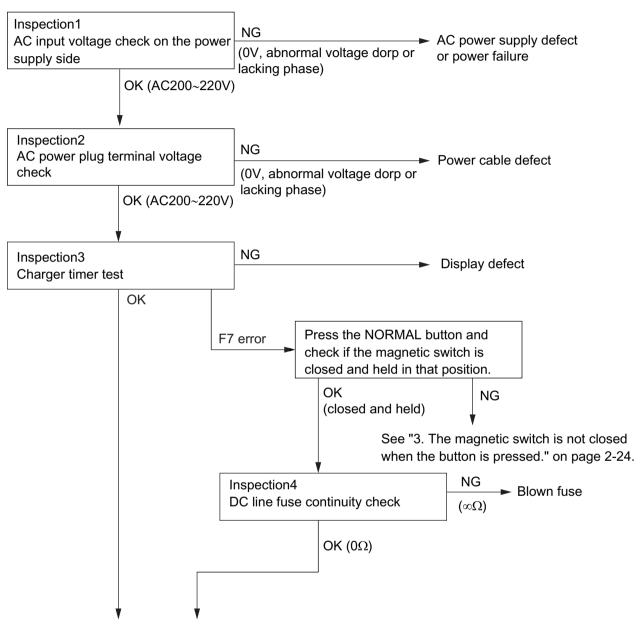

TIMER TEST

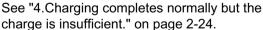
OPERATING PROCEDURE

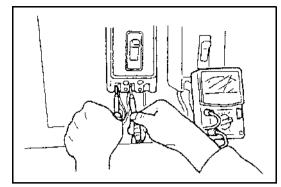
- 1. Connect the power plug to the receptacle on the vehicle.
- 2. The initial timer test screen appears on the display.

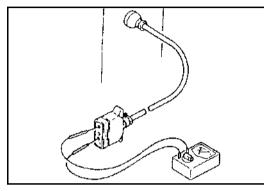

3. When buttons (1) and (2) and are pressed at the same time to start the timer test, "NOW TESTING!" will appear on the screen.

The bars indicating charge light up at a rate of one per second as the test proceeds. When ten bars are lit up after 10 seconds, the test is complete and "TEST COMPLETED" appears on the screen.
 The LEDs on the operation panel come on in the order of (3)→(4)→(5).


SPH


 The magnetic switch turns on when "NOW TESTING!" is displayed, and turns off upon display of "TEST COMPLETED" about ten seconds later.




4. The initial screen reappears when any of buttons (1) to (2) is pressed.

TROUBLESHOOTING When a Diagnosis Error Code Is Displayed Error Code F6-1: Safety timer activated

INSPECTION 1. Power supply voltage check

Measurement terminals	Power supply terminal		
Tester range	250 VAC		
Standard	200 to 220 V		

OK (200 to 220 V)

 \rightarrow To inspection 2

NG (0 V, abnormal voltage drop or lack of

phase)

 \rightarrow Power supply defect

INSPECTION 2. Power supply plug terminal voltage inspection

Measurement terminals	Power plug terminals
Tester range	250 VAC
Standard	200 to 220 V

OK (200 to 220 V)

 \rightarrow To inspection 3

NG (0 V, abnormal voltage drop or lacking phase)

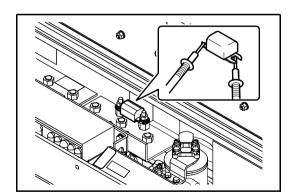
 \rightarrow Power cable defect

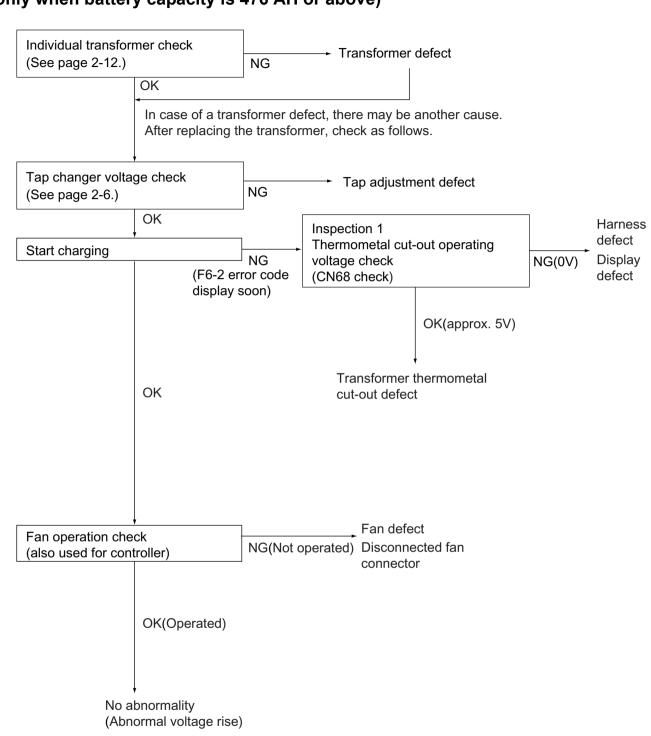
INSPECTION 3. Charger timer test

See the TIMER TEST section (page 2-15). OK (200 to 220 V)

 \rightarrow See "4. Charging completes normally but the charge is insufficient." of "No diagnosis error code is displayed" on page 2-24. NG (0 V, abnormal voltage drop or lack of phase)

 \rightarrow Display defect


INSPECTION 4. DC side fuse continuity inspection

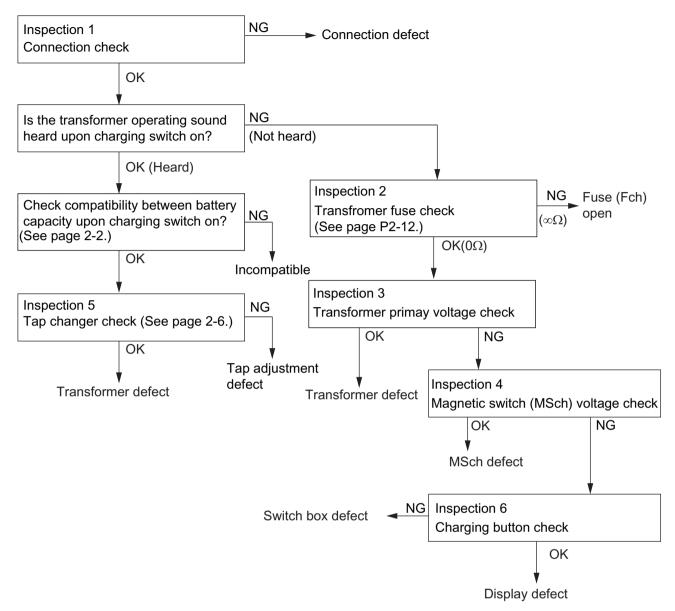

AC power plug disconnected, charging buttons off and fuse removed

Measurement terminals	Both terminals of DC fuse
Tester range	Ω × 1
Standard	0 Ω

OK (0 Ω)

→ See "4. Charging cpmpletes normally but the charge is insufficient." of "No diagnosis error code is displayed" on page 2-24. NG ($\infty \Omega$) → Blown fuse

INSPECTION 1. Thermometal cut-out operating voltage check

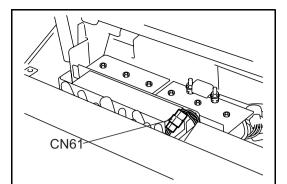

Measurement terminals	CN68-1(139)(+)–CN68-2(14)(main harness side)		
Tester range	DC10V		
Standard	Approx. 5V		

OK (approx. 5V) \rightarrow Transformer thermometal cut-out defect NG \rightarrow Harness defect, display defect

(only when battery capacity is 476 AH or above)

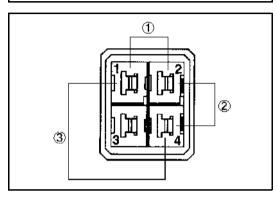
Error Code F6-2: Overheat Detection

Error Code F7: Charging start failure

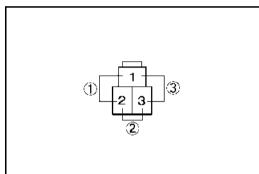


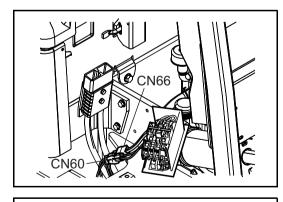
INSPECTION 1. Connection check

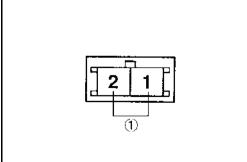
- (1) Check that the P1 and N1 terminals of the transformer and controller are connected correctly without any looseness.
- (2) Check that CN60, CN66 and CN61 are connected correctly.
- (3) Check that the AC and DC plugs are free from contact defect. (No roughness of the terminal or heating during power conduction.)
- (4) Check that the power cable is not damaged.
 OK → Transformer operating sound check
 Not OK → Connection defect


INSPECTION 2. Transformer fuse (Fch) inspection (See page2-12.)

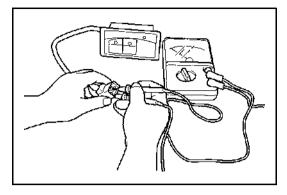
OK (0 Ω) \rightarrow To inspection 3 NG ($\infty \Omega$) \rightarrow Open fuse (Fch)




INSPECTION 3. Transformer primary voltage inspection

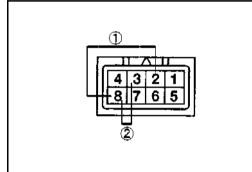

CN61 connector disconnected, AC plug connected and charging switch ON OK (200 to 220 V) \rightarrow Transformer defect NG (other than standard) \rightarrow To inspection 4

Measure- ment terminals	476AH or more Below 476AH	 (1) CN61-1 (U)-CN61-2 (V) (TAB side) (2) CN61-2 (V)-CN61-4 (W) (TAB side) (3) CN61-4 (W)-CN61-1 (U) (TAB side) (1) CN61-1 (U)-CN61-2 (V) (REC side) (2) CN61-2 (V)-CN61-3 (W) (REC side) (3) CN61-3 (W)-CN61-1 (U) (REC side)
Tester range		250 VAC
Standard		200 to 220 V

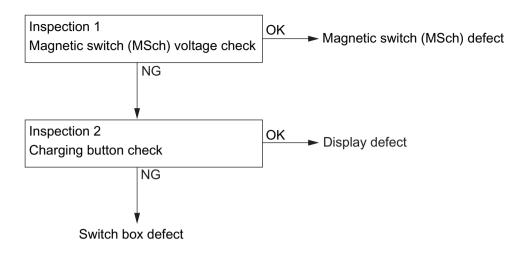

INSPECTION 4. Magnetic switch voltage inspection

CN66 connector disconnected AC plug connected, charging switch ON/ OFF operated) OK (200 to 220V) \rightarrow MSch defect NG (other than standard) \rightarrow To inspection 6

Measurement terminals	(1) CN66-1(R)-CN66-2(95)(REC side)
Tester range	250 VAC
Standard	Charging buttons ON: 200 to 220 V, Charging bottoms OFF: 0 V

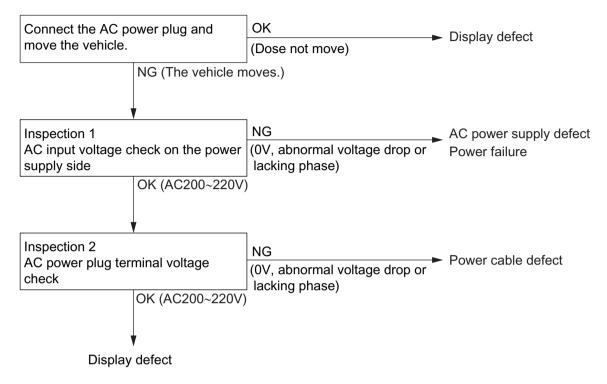

INSPECTION 5. Tap changer check (See page 2-6.)

 $OK \rightarrow Transformer defect$ $NG \rightarrow Tap adjustment defect$


INSPECTION 6. Charging button inspection CN69 connector disconnection

CN69 connector disconnection OK \rightarrow Display defect NG \rightarrow Switch box defect

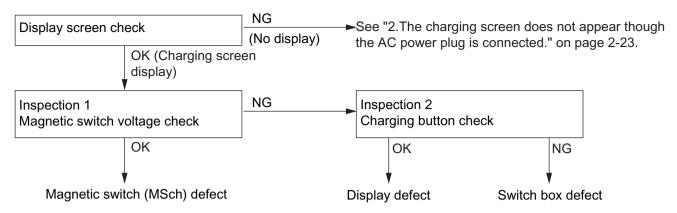
	CN69	Pressed state	Released state	Tester range
(1) NORMAL button	Between 2 and 8	0 Ω	~	Ω×1
(2) EQUAL button	Between 3 and 8	0 Ω	~	22 ** 1


Error code F8: Charging completion failure

INSPECTION 1. Magnetic switch (MSch) voltage inspection (See page 2-20.) INSPECTION 2. Charging button inspection (See page 2-21.)

No diagnosis error code is displayed

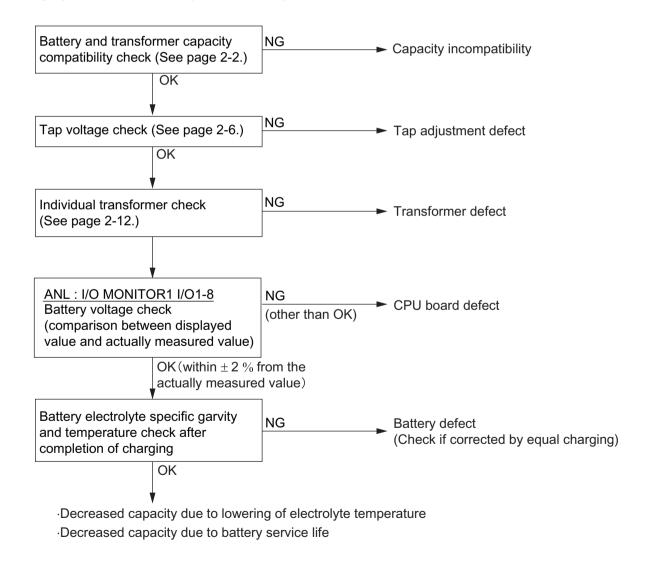
- 1. The vehicle does not move at all. (Charging screen appears even though the power plug is not connected.)
 - Display defect
- 2. Charging screen does not appear even though the AC power plug is connected.



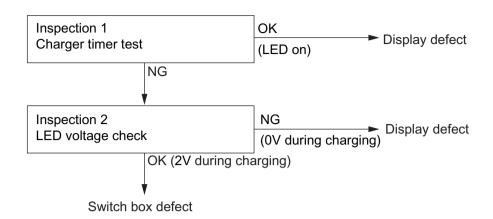
INSPECTION 1. Power supply voltage inspection

See Inspection 1 for diagnosis error code F6-1 (page 2-17). OK (AC 200 to 220 V) \rightarrow To inspection 2 NG (0 V, abnormal voltage drop or lacking phase) \rightarrow AC power supply defect or power interruption

INSPECTION 2. Power plug terminal voltage inspection


See Inspection 2 for diagnosis error code F6-1 (page 2-17). OK (AC 200 to 220 V) \rightarrow To inspection 3 NG (0 V, abnormal voltage drop or lacking phase) \rightarrow Power cable defect 3. The magnetic switch is not suctioned when the charging button is pressed.

INSPECTION 1. Magnetic switch voltage inspection (See page 2-20.)


INSPECTION 2. Charging button inspection (See page 2-21.)

4. Charging completes normally but the charge is insufficient.

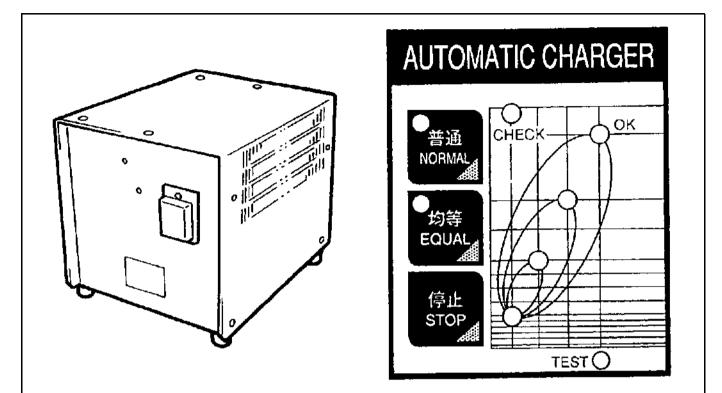
5. Charging progress indicator does not proceed during the timer test. Display defect

6. The LED on the button panel (charger operation panel) does not come on.

INSPECTION 1. Charger timer test (See page 2-15.)

INSPECTION 2. LED applied voltage inspection (See page 2-8.)

(CN69 connector must be connected.)


	CN70	Charging in progress (LED on)	Charging stopped (LED off)	Tester range
NORMAL LED	Between 9 and 30 (between Y–B and B–W)	2 V	0 V	10 VDC
EQUAL LED	Between 10 and 30 (between Y–G and B–W)	2 V	0 V	10 000

	CN70	Upon end of test mode	Other state (LED off)	Tester range
UP LED	Between 11 and 30 (between Y–W and B–W)	2 V	0 V	10 VDC

OFF-VEHICLE CHARGER APPLICABLE CHARGER LIST

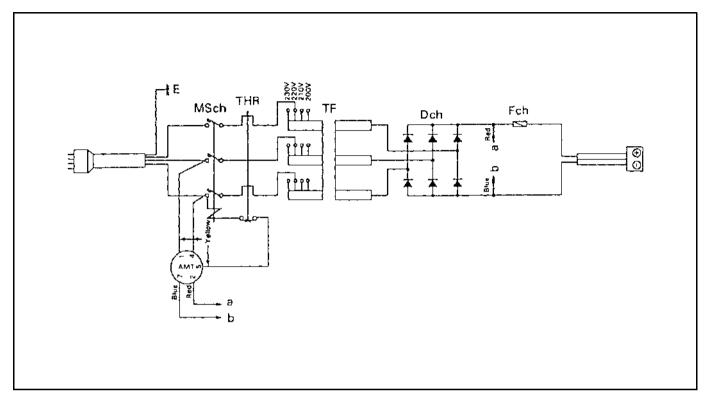
Maker	Battery voltage	Power supply voltage	Charger model	Trans- former capacity (kVA) (50/60 Hz)	Applicable capacity (AH/5HR)	Output plug	Power capacity (50/60 Hz)	Weight (kg) [lb]	7 F B E 10	7 F B E 13	7 F B E 15	7 F B E 18	7 F B E 20
			SG3-69- 60JBY-2	5.4/4.7	280 to 312		20	40 [88.2]	0	0			
		200 V	SG3-69- 80JBY-2	7.3/6.5	365 to 390		30/20	44 [97.0]	0	0	0	0	0
		200 V	SG3-69- 100JBY-2	9.2/8.1	476 to 565		30	60 [132.3]			0	0	0
Japan Storage	48 V		SG3-69- 130JBY-2	12.0/11.0	645		40	64 [141.1]					0
Battery	40 V		SG3-69- 60JBY-2	5.4/4.7	280 to 312		10	40 [88.2]	0	0			
			SG3-69- 80JBY-2	7.3/6.5	365 to 390		15/10	44 [97.0]	0	0	0	0	0
	SG	SG3-69- 100JBY-2	9.2/8.1	476 to 565		15	60 132.3]			0	0	0	
		130	SG3-69- 130JBY-2	12.0/11.0	645	SB175A	20	64 [141.1]					0
			ZTC48- 54AD	4.5	280 to 312	SBITSA	15	40 [88.2]	0	0			
		200 V 80A 2TC4 100A ZTC4	ZTC48- 80AD	6.6	365 to 390		20	60 [97.0]	0	0	0	0	0
			ZTC48- 100AD	8.3	476 to 565		30	60 [97.0]			0	0	0
YUASA	X444.0.4		ZTC48- 120AD	9.2	645		30	63 [138.9]					0
10ASA 40 V	ZMC48- 54AD ZMC48- 80AD	4.5	280 to 312		10	40 [88.2]	0	0					
			6.6	365 to 390		10	60 [97.0]	0	0	0	0	0	
		400 V	ZMC48- 100AD	8.3	476 to 565		15	60 [97.0]			0	0	0
			ZMC48- 120AD	9.2	645		15	63 [138.9]					0

GS GENERAL

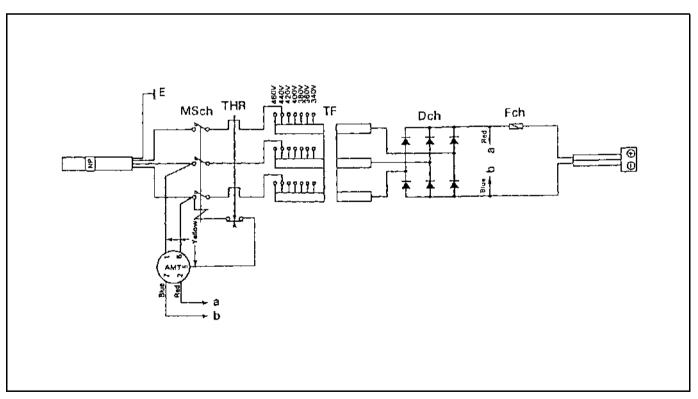
SPECIFICATIONS 200 V POWER SUPPLY VOLTAGE

lte	m	SG3-69-60JBY-2	SG3-69-80JBY-2
Magnetic switch	Туре	CLK-15JT	CLK-20JT
(MSch)	Rating	AC 200 V 50/60 Hz	AC 200 V 50/60 Hz
Thermal relay	Туре	T-11	T-18
(THR)	Set value	15 A	18 A
Transformer	Capacity (50/60 Hz)	5.4/4.7KVA	7.3/6.5 KVA
(TF)	Insulation	Class H	Class H
Silicon diode (Dch)	Туре	SKR71/02 SKN71/02	SKR71/02 SKN71/02
	Operating Voltage setting	Microcomputer control	Microcomputer control
Timer (AMT)	Timer setting	Microcomputer control	Microcomputer control
	Total timer setting	16 H	16 H
Fuse (Fch)	Capacity	80 A	80 A
AC power supply capacity	AC power supply capacity		19/17A
Charger weight		42 kg	44 kg

lte	m	SG3-69-100JBY-2	SG3-69-130JBY-2
Magnetic switch	Туре	CLK-26JT	CLK-35JT
(MSch)	Rating	AC 200 V 50/60 Hz	AC 200 V 50/60 Hz
Thermal relay	Туре	T-18	T-35
(THR)	Set value	22 A	30 A
Transformer	Capacity (50/60 Hz)	9.2/8.1 KVA	12.0/11.0 KVA
(TF)	Insulation	Class H	Class H
Silicon diode (Dch)	Туре	SKR130/02 SKN130/02	45M20 45MA20
T (ANAT)	Operating Voltage setting	Microcomputer control	Microcomputer control
Timer (AMT)	Timer setting	Microcomputer control	Microcomputer control
	Total timer setting	16 H	16 H
Fuse (Fch)	Capacity	100 A	150 A
AC power supply capacity	y	24/21 A	31/27 A
Charger weight		60 kg	64 kg


400 V POWER SUPPLY VOLTAGE

lte	m	SG3-69-60JBY-2	SG3-69-80JBY-2
Magnetic switch	Туре	CLK-15JT	CLK-15JT
(MSch)	Rating	AC 400 V 50/60 Hz	AC 400 V 50/60 Hz
Thermal relay	Туре	T-11	T-11
(THR)	Set value	7.5 A	11 A
Transformer	Capacity (50/60 Hz)	5.4/4.7 KVA	7.3/6.5 KVA
(TF)	Insulation	Class H	Class H
Silicon diode (Dch)	Туре	SKR71/02 SKN71/02	SKR71/02 SKN71/02
	Operating Voltage setting	Microcomputer control	Microcomputer control
Timer (AMT)	Timer setting	Microcomputer control	Microcomputer control
	Total timer setting	16 H	16 H
Fuse (Fch)	Capacity	80 A	80 A
AC power supply capacity		7.1/6.3 A	9.5/8.4 A
Charger weight		42 kg	44 kg


Ite	m	SG3-69-100JBY-2	SG3-69-130JBY-2
Magnetic switch	Туре	CLK-15JT	CLK-26JT
(MSch)	Rating	AC 200 V 50/60 Hz	AC 200 V 50/60 Hz
Thermal relay	Туре	T-11	T-18
(THR)	Set value	15 A	22 A
Transformer	Capacity (50/60 Hz)	9.2/8.1 KVA	12.0/11.0 KVA
(TF)	Insulation	Class H	Class H
Silicon diode (Dch)	Туре	SKR130/02 SKN130/02	45M20 45MA20
	Operating Voltage setting	Microcomputer control	Microcomputer control
Timer (AMT)	Timer setting	Microcomputer control	Microcomputer control
	Total timer setting	16 H	16 H
Fuse (Fch)	Capacity	100 A	150 A
AC power supply capacity	/	12/11 A	15/14 A
Charger weight		60 kg	64 kg

WIRING DIAGRAM

For 200 V

For 400 V

BEFORE CHARGING

If the ampere capacity at the charging location is insufficient because other electrical appliances are being used, ask an electrical work contractor to provide an exclusive circuit for the charger.

This circuit should be provided with circuit breakers or fuses having the capacities shown on P2-27.

TAP Changer Setting

1. Measure with a circuit tester the supply voltage used for charging.

Circuit tester range: AC(250 V or 1000 V)

Note:

Measure the supply voltage at night (or during recess when electrical appliances are not used.)

- 2. Set the tap charger
 - (1) Remove the cover of each tap.
 - (2) Select the appropriate tap according to the supply voltage measured in step 1 above.
 - (3) Manually close the magnetic switch, and measure the voltage at each tap terminal.

200	V

Тар	Measured voltage
200 V	199 V or less
210 V	200 to 209 V
220 V	210 to 219 V
230 V	220 to 229 V

400 V

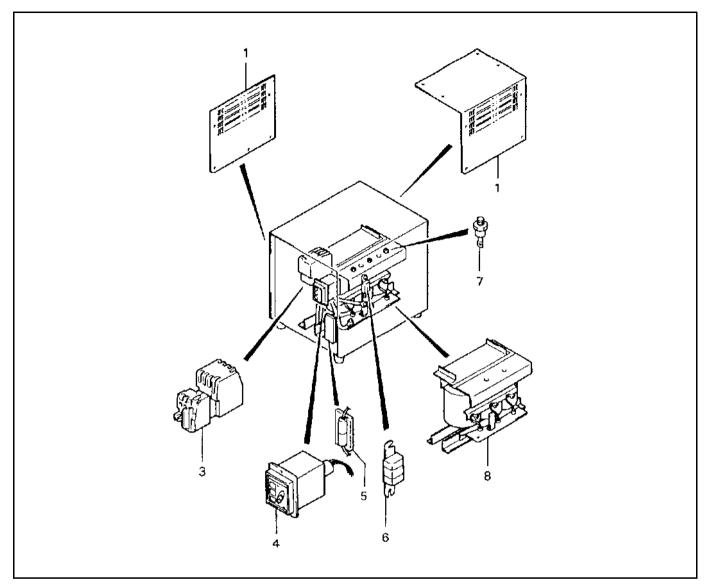
Тар	Measured voltage
340 V	339 V or less
360 V	340 to 359 V
380 V	360 to 379 V
400 V	380 to 399 V
420 V	400 to 419 V
440 V	420 to 439 V
460 V	440 to 459 V

Note:

- The tap of the 200 V type is set to 220 V at time of shipment.
- Tap changer setting shall be made for the U, V and W phases.
- After setting the tap changer, be sure to check the battery charging status (specific gravity and fluid level) for about a week to confirm proper tap setting.

TROUBLESHOOTING

Estimated cause	Inspection method	Standard	Remedial action				
The thermal relay on the AC side is tripped as soon as charging starts							
Short circuit of MSch	MSch coil continuity inspection Measurement terminals: A_1 and A_2	OK: Several hundred Ω NG: Abnormally low resistance	MSch replacement				
TF insulation defect or short circuit between coils	TF insulation inspection Measurement terminals: Between each coil and frame Inspection of short circuit between TF primary and secondary coils Measurement terminals: Between pri- mary and secondary coil terminals	OK: 0.2 M Ω or more NG: Less than 0.2 M Ω OK: 0.2 M Ω or more NG: Less than 0.2 M Ω	TF replacement				
Dch defect	Dch resistance inspection in forward and reverse directions Measurement terminals: Both terminals (anode and cathode) of Dch Anode - Cathode Forward: Anode - Cathode + Reverse: Anode + Cathode -	OK: Forward Several 10 Ω or more Reverse $\infty \Omega$ NG: Forward 0 Ω \rightarrow Reverse 0 Ω	Dch replacement				
Other short circuit in main circuit	Inspect the short-circuited portion by separating each circuit.	_	Repair of defective por- tion				
Charging does not s	tart though operated correctly for starting c	harging.					
Interruption or missing phase of input power supply	Voltage measurement at main outlet for power supply Measurement terminals: Between outlet terminals	OK: 200 to 220 V (charger for 200 V) 380 to 440 V (charger for 400 V) NG: 0 V	In case of missing phase, repair after check- ing the case.				
Disconnection in the AC plug	Voltage measurement between R, S and T terminals of MSch	OK: 200~220V (charger for 200 V) 380 to 440 V (charger for 400 V) NG: 0 V	Repair the plug if any phase is missing or no voltage is detected.				
Blown fuse on DC side	DC side fuse continuity inspection Measurement terminals: Both terminals of fuse	OK: 0 Ω NG: ∞ Ω	Fuse replacement				
MSch coil discon- nection	MSch coil continuity inspection Measurement terminals: Between MSch terminals A_1 and A_2	OK: Several hundred Ω NG: $\infty \Omega$	MSch replacement				
AMT defect	AMT inspection Measurement terminals: Between AMT terminals 1 and 5 in wiring diagram	OK: 0 V NG: 200 V (Charger for 200 V) 400 V (Charger for 400 V)	AMT replacement				


Estimated cause	Inspection method	Standard	Remedial action	
THR contact defect	THR contact inspection Measurement terminals: Between THR terminals 95 and 96	OK: Non operated state 0Ω Operated state $\infty \Omega$ NG: Non operated state $\infty \Omega$	THR reset- ting by lever operation or MSch ASSY replacement	
Incomplete charging				
TF tap charger defect	AC input voltage measurement Measurement terminals: Between TF tap charger terminals		Change the wiring to match the input voltage	
Missing phase in input power supply	Voltage measurement at mains outlet for power supply Measurement terminals: Between mains outlet terminals	OK: 200 to 220 V (Charger for 200 V) 380 to 440 V (Charger for 400 V)	In case of a missing phase, repair after check- ing the cause.	
THR tripping	THR continuity inspection Measurement terminals: Between THR terminals 95 and 96	OK: Non operated state 0Ω Operated state $\infty \Omega$ NG: Non operated state $\infty \Omega$	Reset lever operation after check- ing the THR tripping cause	
Dch defect (open circuit)	Inspection of Dch resistance in forward and reverse directions Measurement terminals: Both terminals (anode and cathode) of Dch Anode - Cathode Forward: Anode - Cathode + Reverse: Anode + Cathode -	OK: Forward Several ten or more Reverse $\infty \Omega$ NG: Forward $\infty \Omega$ Reverse $\infty \Omega$	Dch replacement	
Disconnection of TF coil	Measurement terminals: Between TH coil terminals	OK: Continuity NG: $\infty \Omega$	TF replacement	
MSch contact defect	MSch secondary voltage measurement Measurement terminals: Voltage mea- surement between MSch terminals U, V and W	OK: 200 to 220 V (Charger for 200 V) 380 to 440V (Charger for 400 V) NG: 189 V or less (Charger for 200 V) 319 V or less (Charger for 400 V)	MSch contact repair or MSch ASSY replacement	
TF terminal tighten- ing defect	Inspection of each TF terminal tightening state	No loosening of each terminal	Retightening of each termi- nal	
Timer setting at short time	Setting time check in test mode	See timer test section.	AMT replacement	

Estimated cause	Inspection method	Standard	Remedial action
Other contact defect in charging circuit	Inspection of tightening state and con- nector state at each portion	No loosening at each portion	Defective portion repair or retighten- ing
Low battery charge	Inspection of battery fluid specific grav- ity, battery voltage and fluid level If the battery voltage is less than the standard, inspect the voltage per cell.	NG (Measurement after charging): Specific gravity: 1.150 or less Voltage per cell: 1.75V or less Total voltage of whole cells 24 V battery: 21 V or less 48 V battery: 42.5 V or less 72 V battery: 61 V or less	Battery replacement

SERVICE STANDARDS

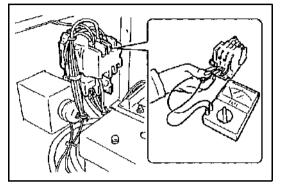
	Item		Service Standard
Power supply voltage	V	For 200 V	200 to 230 V
Fower supply voltage	v	For 400 V	340 to 460 V
		SG3-69-45JBY-2	Approx. 56
		SG3-69-60JBY-2	Approx. 55
No-load secondary voltage (The values are the same	AC V	SG3-69-80JBY-2	Approx. 57
for 200 V and 400 V.)	AC V	SG3-69-100JBY-2	Approx. 58
		SG3-69-130JBY-2	Approx. 56
		SG3-100-100JBY-2	Approx. 85
		24 V	Approx. 37
No-load secondary voltage	DC V	36 V	Approx. 56
NO-IDad Secondary Vollage	DC v	48 V	74 to 78
		72 V	Approx. 114
MSch coil resistance	Ω	CLK-11HT·15HT	Approx. 970
		CLK-20HT·25HT	Approx. 490
	52	CLK-35HT	Approx. 300
		CLK-50HT	Approx. 250
Dch resistance in forward			Approx. 25
Dch resistance in reverse			~
		20M10·20MA10	2.35 (24) [1.74]
		20M20·20MA20	2.35 (24) [1.74]
		20M30·20MA30	2.35 (24) [1.74]
Dch tightening torque	N⋅m (kgf⋅cm) [ft-lb]	45M10·45MA10	16.7 (170) [12.3]
		45M20·45MA20	16.7(170) [12.3]
		45M30·45MA30	16.7 (170) [12.3]
		70M10·70MA10	22.0 (224) [16.2]
Insulation resistance(500 V N	legger)	MΩ	0.2 or more

DISASSEMBLY • INSPECTION • REASSEMBLY

Disassembly Procedure

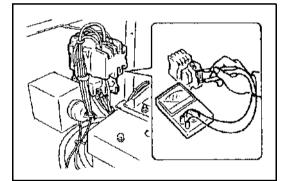
- 1 Remove the charger cover.
- 2 Perform inspections before disassembly. [Point 1]
- 3 Remove the magnetic switch ASSY (MSch). [Point 2]
- 4 Remove the timer ASSY (AMT).
- 5 Remove the resistor (R1·R2).
- 6 Remove the fuse (Fch). [Point 3]
- 7 Remove the diode (Dch). [Point 4]
- 8 Remove the transformer (TF).

Note:


Put a tag indicating the connecting position at the time of disassembly to prevent incorrect connection at the time of reassembly.

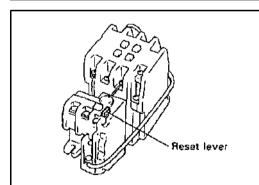
Reassembly Procedure

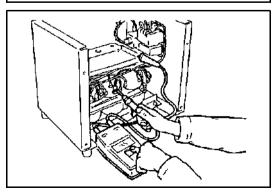
The reassembly procedure is the reverse of the disassembly procedure.


Point Operation

Inspection: Inspect the magnetic switch contact continuity.

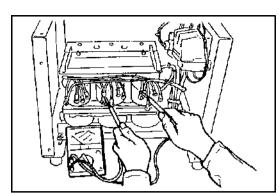
Circuit tester range		$\Omega \times 1$
Measurement terminals		T–W, S–V, R–U
Switch	Msch ON	0 Ω
Owiton	Msch OFF	$\Omega \propto \Omega$

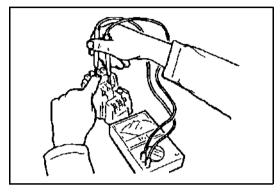

Inspection: Inspect the magnetic switch coil continuity

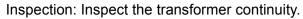

Resistance between A1 and A2	Circuit tester range
See the Service Standards list.	Ω × 1

Inspection: Inspect the thermal relay contact continuity.

Circuit tester range		Ω × 1
Measurement terminals		95–96
Switch	Not operated	0 Ω
Owner	Operated state	$\Omega \propto \Omega$



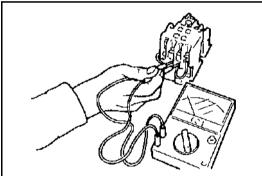

Note:

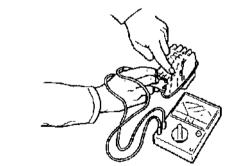

- Do not adjust the thermal relay operating current.
- If the thermal relay is operated to stop charging while the charger is in use, always check the cause of thermal relay operation, and reset the thermal relay after taking the remedial action.
- Push the reset lever lightly to reset the thermal relay.

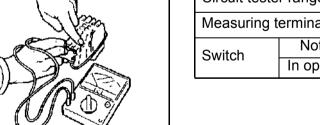
Inspection: Inspect the transformer insulation resistance.

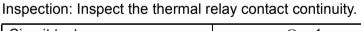
Measurement terminals	Between each coil and frame
Standard value	0.2 M Ω or more

Circuit test range	Ω × 1
Measurement terminals	Primary side U_1-V_1 , V_1-W_1 and W_1-U_1 Secondary side U_2-V_2 , V_2-W_2 and W_2-U_2
Standard value	0 Ω

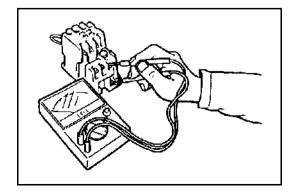

[POINT 2]

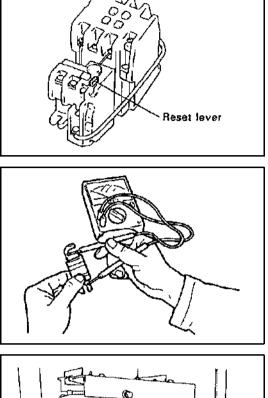

Inspection: Inspect the magnetic switch contact continuity.


Circuit tester range		Ω × 1
Measurement terminals		T–W, S–V, R–U
Switch	ON	0 Ω
Gwitch	OFF	$\infty \Omega$

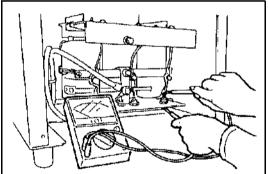

Inspection: Inspect the magnetic switch coil continuity.

Resistance between A1 and A2	Circuit tester range
See the Service Standard list.	Ω × 1



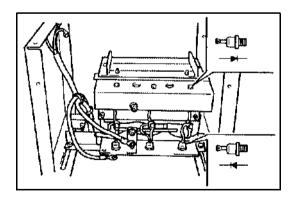


Circuit tester range		Ω × 1
Measuring terminals		95–96
Switch	Not operated	0 Ω
Owner	In operated state	$\Omega \propto \Omega$


Note:

- Do not adjust the thermal relay operating current.
- If the thermal relay is operated to stop charging while the charger is in use, always check the cause of thermal relay operation, and reset the thermal relay after taking the remedial action.

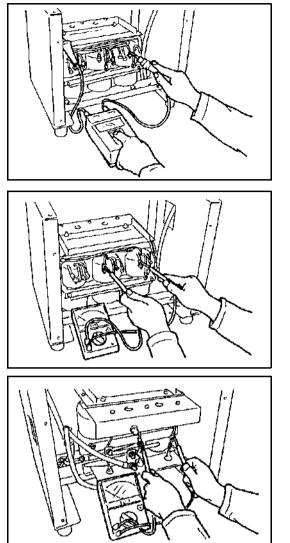
• Push the reset lever lightly to reset the thermal relay.


 $\begin{array}{l} \mbox{[POINT 3]} \\ \mbox{Inspection:} \\ \mbox{Inspect the transformer insulation.} \\ \mbox{Standard: 0} \ \Omega \end{array}$

[POINT 4] Inspection:

Inspect the diode in installed state on the fin. Remove it only when an abnormality is found.

Circuit tester range		Ω × 1
Measurement	Forward	Anode (–) – Cathode (+)
terminals	Reverse	Anode (+) – Cathode (–)
Standard value	Forward	See the Service Standards list.
	Reverse	$\Omega \propto \Omega$



Inspection:

As two diodes having different polarities are used, install in the correct direction.

Note:

In the case of the charger for batteries with the capacity at 320 AH/5 HR or less, the diode mounting direction is the reverse of the direction shown in the figure.

[POINT 5] Inspection:

Inspect the transformer insulation.

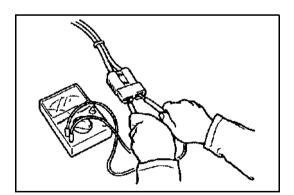
Measurement terminals	Between each coil and frame
Standard value	0.2 M Ω or more

Inspection:

Inspect the transformer coil continuity. Primary coil

Circuit tester range	Ω × 1
Measurement terminals	U_2 – V_2 , V_2 – W_2 and W_2 – U_2
Standard value	0 Ω

Secondary coil


Circuit tester range	Ω × 1
Measurement terminals	U_2 – V_2 , V_2 – W_2 and W_2 – U_2
Standard value	0 Ω

Inspection after Reassembly

1. Inspect each wiring for correctness.

Note:

Check correct wiring at each part by referring to the charger wiring diagram.

2. Inspect the transformer insulation resistance.

Measurement terminals	Between each coil and frame
Standard value	$0.2 M\Omega$ or more

 Measure the no-load secondary voltage. Connect the charger plug to the charger receptacle and start the timer. AC voltage

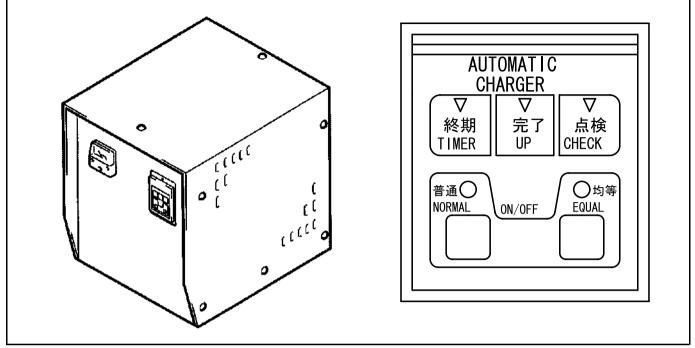
Circuit tester range	AC 250 V · AC 500 V
Measurement terminals	U_2 – V_2 , V_2 – W_2 and W_2 – U_2
Standard value	See the Service Standards list

DC voltage

-	
Circuit tester range	250 VDC
	Dette terreire els effeteren els e
	Both terminals of charger plug
Measurement terminals	(+) terminal – (+) probe
	(-) terminal $-(-)$ probe
Standard value	See the Service Standards list.

AMT Test Method

- 1. Main timer inspection
 - (1) Turn on the AC power switch.
 - (2) Disconnect the battery plug.
 (to unload the charger and operate the voltage relay.)
 - (3) Close the magnetic switch (MSch) forcibly by using an insulating bar and press the NORMAL button (black-blue) or EQUAL button (black-blue) for 5 seconds or more until the TEST LED (red) and CHARGING PROGRESS INDICATOR LEDs (three LEDs excluding the uppermost one) light up. Release the button as soon as they light up, and measure with a stop watch the time until the uppermost LED comes on.
 - (4) If the UP LED lights up within the following period of time after TEST LED lights up and all LEDs then immediatelly go out, the main timer is functioning normally.
 When NORMAL button is pressed: UP LED lights up in about 6 seconds later
 When EQUAL button is pressed: UP LED lights up in about 18 seconds later


2. Total timer inspection

- (1) Turn on the POWER switch.
- (2) Connect the battery in discharged state (as the main timer is operated first because of voltage relay operation in the fully charged state).
- (3) Press the NORMAL or EQUAL button for 5 seconds, the TEST LED lights up and charging starts. Release the button when the TEST LED lights up and measure with a stop watch the time until the CHECK LED lights up.
- (4) If the CHECK LED lights up within the following period of time after the TEST LED lights up, the total timer is functioning normally. (The UP LED does not light up.) CHECK LED lights up in 90 to 100 seconds
- (5) The LED go off when the battery plug is disconnected.

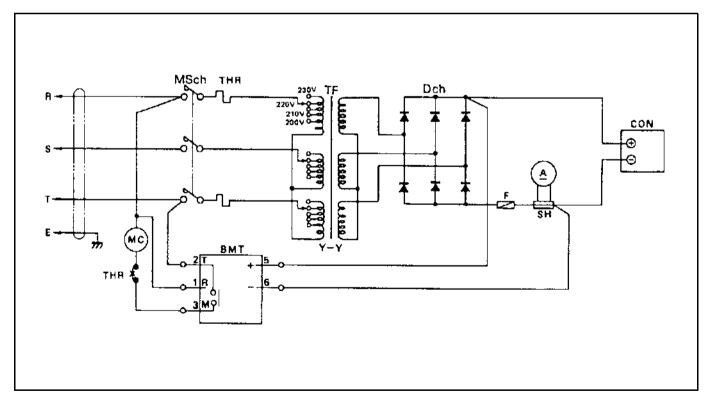
Caution:

If the NORMAL, EQUAL or STOP button is pressed when a fully charged battery is connected, the main timer operates first to light the UP LED and not the CHECK LED. This does not indicate a total timer defect. Inspect again as described above after replacing the battery with a discharged one.

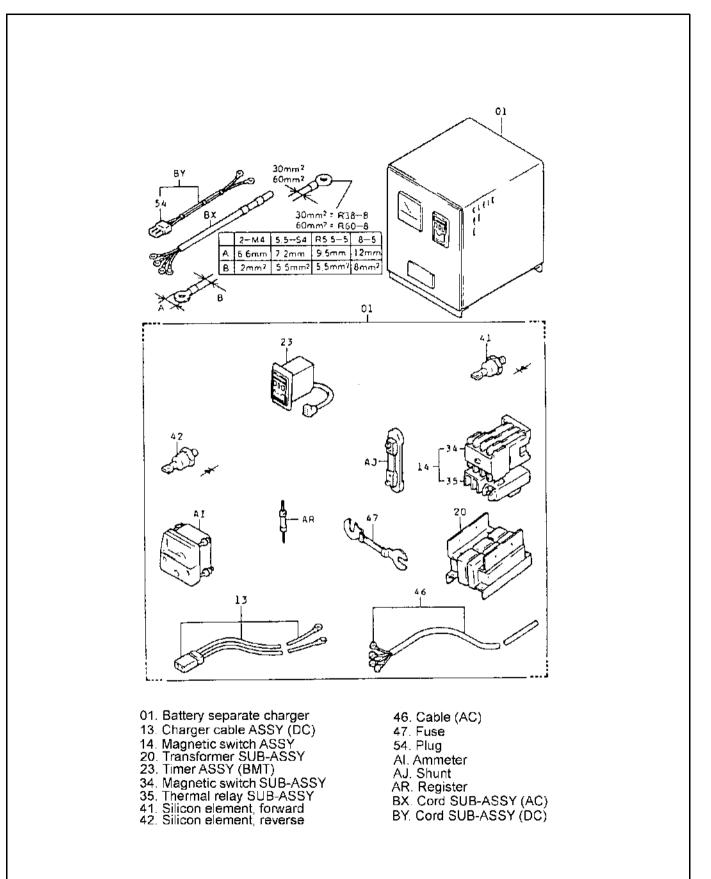
YUASA GENERAL

SPECIFICATIONS 200 V POWER SUPPLY VOLTAGE

	Item	ZTC48-54AD	ZTC48-80AD
Magnetic switch	Туре	CLK-20JT	CLK-20JT
(MSch)	Rating	AC 200 V 50/60 Hz	AC 200 V 50/60 Hz
Thermal relay	Туре	T-18	T-18
(THR)	Set value	15 A	21 A
Transformer	Capacity (50/60 Hz)	4.5 KVA	6.6 KVA
(TF)	Insulation	Class B	Class B
Silicon diode (Dch)	Туре	20M20 20MA20	20M20 20MA20
	Operating voltage setting	Microcomputer control	Microcomputer control
Timer (AMT)	Timer setting	Microcomputer control	Microcomputer control
	Total timer setting	16 H	16 H
DC Ammeter (A)	Туре	DCF-6	DCF-6
	Indicating range	0 to 75 A	0 to 150 A
Fuse (Fch)	Capacity	75 A	100 A


	Item	ZTC48-100AD	ZTC48-120AD
Magnetic switch	Туре	CLK-20JT	CLK-35JT
(MSch)	Rating	AC 200 V 50/60 Hz	AC 200 V 50/60 Hz
Thermal relay	Туре	T-18	T-35
(THR)	Set value	25 A	33 A
Transformer	Capacity (50/60 Hz)	8.3 KVA	9.2 KVA
(TF)	Insulation	Class H	Class H
Silicon diode (Dch)	Туре	45M20 45MA20	45M20 45MA20
	Operating voltage setting	Microcomputer control	Microcomputer control
Timer (AMT)	Timer setting	Microcomputer control	Microcomputer control
	Total timer setting	16 H	16 H
DC Ammeter (A)	Туре	DCF-6	DCF-6
DC Ammeter (A)	Indicating range	0 to 150 A	0 to 150 A
Fuse (Fch)	Capacity	100 A	150 A

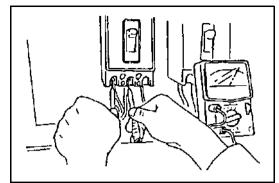
400 V POWER SUPPLY VOLTAGE

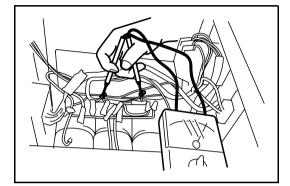

	Item	ZMC48-54AD	ZMC48-80AD
Magnetic switch	Туре	CLK-15JT	CLK-15JT
(MSch)	Rating	AC 400V 50/60 Hz	AC 400 V 50/60 Hz
Thermal relay	Туре	T-11	T-18
(THR)	Set value	8 A	11 A
Transformer	Capacity (50/60 Hz)	4.5 KVA	6.6 KVA
(TF)	Insulation	Class B	Class B
Silicon diode (Dch)	Туре	20M20 20MA20	20M20 20MA20
	Operating voltage setting	Microcomputer control	Microcomputer control
Timer (AMT)	Timer setting	Microcomputer control	Microcomputer control
	Total timer setting	16 H	16 H
DC Ammeter (A)	Туре	DCF-6	DCF-6
	Indicating range	0 to 75 A	0 to 150 A
Fuse (Fch)	Capacity	75 A	100 A

	Item	ZMC48-100AD	ZMC48-120AD
Magnetic switch	Туре	CLK-20JT	CLK-20JT
(MSch)	Rating	AC 400 V 50/60 Hz	AC 400 V 50/60 Hz
Thermal relay	Туре	T-11	T-18
(THR)	Set value	15 A	18 A
Transformer	Capacity (50/60 Hz)	8.3 KVA	9.2 KVA
(TF)	Insulation	Туре Н	Туре Н
Silicon diode (Dch)	Туре	45M20 45MA20	45M20 45MA20
	Operating voltage setting	Microcomputer control	Microcomputer control
Timer (AMT)	Timer setting	Microcomputer control	Microcomputer control
	Total timer setting	16 H	16 H
DC Ammeter (A)	Туре	DCF-6	DCF-6
	Standard	0 to 150 A	0 to 150 A
Fuse (Fch)	Capacity	100 A	150 A

WIRING DIAGRAM

COMPONENTS




BEFORE CHARGING

Off-vehicle Charger Circuit Setup

If the ampere capacity at the charging location is insufficient because other electrical appliances are being used, a separate circuit exclusively for the charger should be installed. This circuit should be provided with circuit breakers or fuses having the capacities shown below.

Туре	Power Supply Voltage (V)	Fuse Capacity (A)
ZTC48-54AD	200 to 230	15
ZMC48-54AD	340 to 460	10
ZTC48-80AD	200 to 230	20
ZMC48-80AD	340 to 460	10
ZTC48-100AD	200 to 230	25
ZMC48-100AD	340 to 460	15
ZTC48-120AD	200 to 230	30
ZMC48-120AD	340 to 460	15

Tap Changer Setting

1. Measure with a circuit tester the power supply voltage to be used for charging.

Circuit tester range: AC (250 V or 1000 V)

Note:

Measure the power supply voltage at night (or, if that is impossible, during a time when electrical appliances are not being operated).

- 2. Set the tap changer
 - (1) Remove the cover of each tap.
 - (2) Select the appropriate tap corresponding to the power supply voltage measured in step 1 above.
 - (3) Manually close the magnetic switch, and measure the voltage at each tap terminal.

200 V

Тар	Measured voltage
200 V	199V or less
210 V	200 to 209 V
220 V	210 to 219 V
230 V	220 to 229 V

400 V

Тар	Measured voltage
340 V	339V or less
360 V	340 to 359V
380 V	360 to 379V
400 V	380 to 399V
420 V	400 to 419V
440 V	420 to 439V
460 V	440 to 459V

Note:

- Tap are set to 220 V at the time of shipment.
- Be sure to set the changer for phases U, V and W.
- For about a week after tap changer setting, keep track of the battery charging state (specific gravity and electrolyte level) to make sure the tap setting is appropriate.

TROUBLESHOOTING

Estimated cause	Check method	Standard	Remedial action
Thermal relay (THR) ac	tuation as soon as charging starts		
TF insulation defect or short-circuit in coil	TF insulation inspection Measurement terminals: Between each coil terminal and frame Inspection of short-circuit between pri- mary and secondary coil of TF	OK: 3 M Ω or more NG: 3 M Ω or less OK: 3 M Ω or more NG: Less than 3 M Ω	TF replacement
Dch defect (short-circuit)	Inspection of Dch forward and reverse resistance Measurement terminals: Both termi- nals of Dch (Anode - Cathode) Anode - Cathode Forward: Anode - Cathode + Reverse: Anode + Cathode -	OK: Forward: Over 10 kΩ Reverse: $\infty \Omega$ NG: Forward: 0 Ω Reverse: 0 Ω	Dch replacement
Charging does not start (The timer does not ope	even when the CHARGE ON/OFF switerate.)	ch is pressed to ON.	
AC power service interruption or lacking phase	Voltage measurement at input recep- tacle Measurement terminals: Between receptacle terminals	OK: 200 to 230 V (Charger for 200 V) 340 to 460 V (Charger for 400 V) NG: 0 V	Repair after checking the cause for lacking phase
Microcomputer timer (BMT) defect	AMT inspection Measurement terminals: AMT 2-3 in wiring diagram	OK: 0 V NG: 200 V (Charger for 200 V) 400 V (Charger for 400 V)	AMT replacement
Open circuit in MSch coil	MSch coil conduction inspection Measurement terminals: MSch A ₁ -A ₂	OK: See the service standard NG: $\infty \Omega$	MSch replacement
THR contact defect	THR contact inspection Measurement terminals: THR 95-96	OK: Non-operated state: 0 Ω Operated state: $\infty \Omega$ NG: Non-operated state: $\infty \Omega$	THR reset lever opera- tion or MSch ASSY replacement
Abnormal noise from M	Sch		
MSch contact rough- ening	Visual inspection of MSch contact	NG: Excessive roughen- ing or burn of contact surface	MSch replacement
Dust entrance or cor- rosion at movable part	Visual inspection of MSch contact	NG: Dust accumulation or corrosion on mov- able contact	MSch con- tact correc- tion or MSch replacement

Estimated cause	Check method	Standard	Remedial action
The ammeter does not	defect.		
Blown Fch	Fch conduction check Measurement terminals: Both termi- nals of Fch	OK: 0 Ω NG: ∞ Ω	Fch replacement
Open circuit in TF	TF coil conduction inspection Measurement terminals: Between TF terminals	OK: 0 Ω NG: ∞ Ω	TF replacement
Dch defect (open circuit)	Dch forward and reverse resistance inspection Measurement terminals: Both termi- nals of Dch Forward Forward: Anode – Cathode + Reverse: Anode + Cathode –	OK: Forward: Over 10 kΩ Reverse: ∞ Ω NG: Forward: ∞ Ω Reverse: ∞ Ω	Dch replacement
Ammeter defect	Inspection of conduction between ammeter terminals Measurement terminals: Both termi- nals of ammeter	OK: Over 10 Ω or less NG: ∞ Ω	Ammeter replacement
Insufficient charging or	total timer actuation (CHECK LED ON)		
Lacking phase in AC power supply	Voltage measurement at input recep- tacle Measurement terminals: Between receptacle terminals	OK: 200 to 230 V (Charger for 200 V) 340 to 460 V (Charger for 400 V) NG: 0 V	Repair after checking the cause for lacking phase
Improper TF tap changer setting	Input AC voltage measurement Measurement terminals: Between TF tap changer terminals		Wiring change to the taps match- ing the input voltage
MSch contact defect	Measurement of secondary voltage at MSch contacts Measurement terminals: MSch, U, V and W terminals	OK: 200 to 230 V (Charger for 200 V) 340 to 460 V (Charger for 400 V) NG: 189 V or less 329 V or less	MSch con- tact repair or MSch replacement
Open circuit in TF	TF wiring conduction inspection Measuring terminals: TF coil terminals	OK: 0 Ω NG: ∞ Ω	TF replacement
Dch defect (open circuit)	Dch forward and reverse resistance measurement Measurement terminals: both termi- nals of Dch Forward Forward: Anode – Cathode + Reverse: Anode + Cathode –	OK: Forward: Over 10 kΩ Reverse: $\infty \Omega$ NG: Forward: $\infty \Omega$ Reverse: $\infty \Omega$	Dch replacement
Microcomputer timer (BMT) defect	Set time check in test mode	See page 2-21	BMT replacement

Estimated cause	Check method	Standard	Remedial action
Blown Fch	Fch conduction inspection Measurement terminals: Both termi- nals of Fch	ΟΚ: 0 Ω NG: ∞ Ω	Fch replacement
Excessive charging or a	ammeter deflection		
Improper tap changer setting	Input AC voltage measurement Measurement terminals: TF tap changer terminals		Wiring change to the tap in refer- ence to the input voltage
Microcomputer timer (BMT) operation	Set time check in test mode	See page 2-21	BMT replacement
Total timer operation (CHECK LED blinking)			
Microcomputer timer defect		_	BMT replacement

2-52

Item		Service Standard	
Power supply voltage	V	for 200 V	200 to 230 V
rower supply voltage	v	for 400 V	340 to 460 V
	AC V	ZM(T)C48-54AD	Approx. 56
No load accordant voltage		ZM(T)C48-80AD	Approx. 55
No-load secondary voltage		ZM(T)C48-100AD	Approx. 57
		ZM(T)C48-120AD	Approx. 58
No-load secondary voltage	DC V	for 48 V battery	72
	Ω	CLK-11HT·15HT	Approx. 970
MSch coil resistance		CLK-20HT·25HT	Approx. 490
		CLK-35HT	Approx. 300
Dch resistance in forward Ω		Approx. 25	
Dch resistance in reverse Ω		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Deb tightoping torque	N.m (kaf.om) [ft lb]	20M20·20MA20	2.35 (24) [1.74]
Dch tightening torque	N·m (kgf·cm) [ft-lb]	45M20·45MA20	16.7 (170) [12.3]
Insulation resistance (500 V megohmmeter)		MΩ	3 or more

BMT Test Method

Be sure to use a fully charged battery for the test.

- 1. Main timer inspection
 - (1) NORMAL test

Press the NORMAL button on the BMT panel for 5 seconds or more to start the test. As soon as the NORMAL button is pressed, the magnetic switch is operated and the NORMAL and FINAL LEDs (green) on the BMT panel come on to indicate the start of charging. After 5 seconds, the NORMAL LED (green) starts blinking. The operation stops automatically when the FINAL timer setting (approx. 20 seconds) for the NORMAL test elapses, and the UP LED (green) comes on. To rest the BMT and turn of the UP LED (green), press the NORMAL button again.

(2) EQUAL test

Press the EQUAL button on the BMT panel for about 5 seconds or more to start the test. As soon as the EQUAL button is pressed, the magnetic switch is operated and the EQUAL and FINAL LEDs (green) on the BMT panel come on to indicate the start of charging. After 5 seconds, the EQUAL LED (green) starts blinking. The operation stops automatically when the FINAL timer setting (approx. 40 seconds) for the EQUAL test elapses, and the UP LED (green) comes on. To reset the BMT and turn of the UP LED (green), press the EQUAL switch again.

2. Total timer inspection

Press the NORMAL and EQUAL buttons on the BMT panel are simultaneously for about 5 seconds or more.

As soon as the these buttons are pressed, the magnetic switch is operated and the NORMAL LED (green) on the BMT panel comes on to indicate the start of charging. After 5 seconds, the NORMAL and EQUAL LEDs (green) start blinking. The operation stops automatically when the setting time for the total timer test (approx. 60 seconds) elapses, and the CHECK LED (red) blinks. To reset the BMT and turn of the CHECK LED (red), press the NORMAL or EQUAL button again.

Caution:

If a discharged battery is used for the main timer inspection, the FINAL LED (green) does not come on. In stead, the operation stops automatically when the setting time for the total timer test (approx. 60 seconds) elapses, and the CHECK LED (red) blinks.

CONTROLLER

	Page
GENERAL	3-2
SPECIFICATIONS	3-3
COMPONENTS	3-4
BEFORE REPAIR	3-6
CONNECTOR INSPECTION	3-7
CONTROLLER	3-19
MAIN CONTROLLER ASSY	3-19
TRAVELING AC DRIVER	3-20
MATERIAL HANDLING AC DRIVER, CONTACTOR PANEL ASSY	3-21
CHECK MOTOR INPUT VOLTAGE	3-23
REASSEMBLY	3-25
DISPLAY	3-26
DIRECTION SWITCH	3-27
	3-27
DISASSEMBLY · INSPECTION · REASSEMBLY	3-29
ACCELERATOR POTENTIOMETER	
ADJUSTMENT	3-30
BRAKE SWITCH ADJUSTMENT	3-31
FOOT BRAKE	3-31
PARKING BRAKE	3-31
MATERIAL HANDLING LEVER SWITCH ADJUSTMENT	3-32

Thank you very much for your reading. Please Click Here Then Get More Information.